Grove Base Hat for Raspberry PI Zero Windows 10 IoT Core

During the week a package arrived from Seeedstudio with a Grove Base Hat for RPI Zero. So I have modified my Grove Base Hat for RPI Windows 10 IoT Core library to add support for the new shield.

Grove Base Hat for Raspberry PI Zero on Raspberry PI 3

The Raspberry PI Zero hat has a two less analog ports and a different device id so some conditional compile options were necessary

namespace devMobile.Windows10IoTCore.GroveBaseHatRPI
{
#if (!GROVE_BASE_HAT_RPI && !GROVE_BASE_HAT_RPI_ZERO)
#error Library must have at least one of GROVE_BASE_HAT_RPI or GROVE_BASE_HAT_RPI_ZERO defined
#endif

#if (GROVE_BASE_HAT_RPI && GROVE_BASE_HAT_RPI_ZERO)
#error Library must have at most one of GROVE_BASE_HAT_RPI or GROVE_BASE_HAT_RPI_ZERO defined
#endif

	public class AnalogPorts : IDisposable
	{
		private const int I2CAddress = 0x04;
		private const byte RegisterDeviceId = 0x0;
		private const byte RegisterVersion = 0x02;
		private const byte RegisterPowerSupplyVoltage = 0x29;
		private const byte RegisterRawBase = 0x10;
		private const byte RegisterVoltageBase = 0x20;
		private const byte RegisterValueBase = 0x30;
#if GROVE_BASE_HAT_RPI
		private const byte DeviceId = 0x0004;
#endif
#if GROVE_BASE_HAT_RPI_ZERO
		private const byte DeviceId = 0x0005;
#endif
		private I2cDevice Device= null;
		private bool Disposed = false;

		public enum AnalogPort
		{
			A0 = 0,
			A1 = 1,
			A2 = 2,
			A3 = 3,
			A4 = 4,
			A5 = 5,
#if GROVE_BASE_HAT_RPI
			A6 = 6,
			A7 = 7,
#endif
		};

The code updates have been “smoke” tested and I have updated the GitHub repository.

Carbon Dioxide Sensor(MH-Z16) library comparison

The first library I looked at was for the DFRobot Gravity: UART Infrared CO2 Sensor (0-50000ppm). There was sample code provided on the associated wiki page. The code worked first time I ran it but I didn’t use this library due to the lack of checksum & packet header/footer validation.

/***************************************************
* Infrared CO2 Sensor 0-50000ppm(Wide Range)
* ****************************************************
* The follow example is used to detect CO2 concentration.
  
* @author lg.gang(lg.gang@qq.com)
* @version  V1.0
* @date  2016-6-6
  
* GNU Lesser General Public License.
* See <http://www.gnu.org/licenses/> for details.
* All above must be included in any redistribution
* ****************************************************/ 
#include <SoftwareSerial.h>
SoftwareSerial mySerial(10, 11); // RX, TX
unsigned char hexdata[9] = {0xFF,0x01,0x86,0x00,0x00,0x00,0x00,0x00,0x79}; //Read the gas density command /Don't change the order
void setup() {
  
  Serial.begin(9600);
  while (!Serial) {

  }
  mySerial.begin(9600);

}

void loop() {
   mySerial.write(hexdata,9);
   delay(500);

 for(int i=0,j=0;i<9;i++)
 {
  if (mySerial.available()>0)
  {
     long hi,lo,CO2;
     int ch=mySerial.read();

    if(i==2){     hi=ch;   }   //High concentration
    if(i==3){     lo=ch;   }   //Low concentration
    if(i==8) {
               CO2=hi*256+lo;  //CO2 concentration
      Serial.print("CO2 concentration: ");
      Serial.print(CO2);
      Serial.println("ppm");      
      }
    }   
  } 
}

After some GitHub searching the second library I looked at was abbozza_CO2_MHZ16_arduino by Michael Brinkmeier. This library appears to be “plug-in” module for the abbozza! framework. I didn’t use this library due to the lack of checksum & packet header/footer validation.

/**
 * @license
 * abbozza! Calliope plugin for the MH-Z16 CO2 sensor
 * 
 * The sensor has to be connected to a serial connection with 9600 baud.
 *
 * Copyright 2015 Michael Brinkmeier ( michael.brinkmeier@uni-osnabrueck.de )
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "SoftwareSerial.h"
#include "MHZ16.h"
#include "Arduino.h"

MHZ16::MHZ16(int tx, int rx) {
    this->serial = new SoftwareSerial(rx,tx,false);
    this->serial->begin(9600);
}


void MHZ16::calibrate() {
    int idx;
    for (idx = 0; idx < 9; idx++) {
        serial->write(cal[idx]);
    }
    delay(10);
}

void MHZ16::doMeasurement() {
    int idx;
    int bu;

    for (idx = 0; idx < 9; idx++) {
        serial->write(cmd[idx]);
    }
    delay(10);

    while (serial->available()) {
        do {
            bu = serial->read();
        } while (bu != 255);
        buf[0] = bu;

        idx = 1;
        while (serial->available() && (idx < 9)) {
            bu = serial->read();
            buf[idx] = bu;
            idx++;
        }

        if (idx == 9) {
            PPM = ((int) buf[2]) *256 + ((int) buf[3]);
        }
    }
}

int MHZ16::getPPM() {
    return PPM;
}

The third library was produced by Sandbox electronics for their selection of 10,000PPM thru 100,000PPM MH-Z16 sensors. Their datasheet looked similar(maybe newer?) to the Seeedstudio one and the packet format was the same.

Their library had checksum & packet header/footer validation but I didn’t use it because the carbon dioxide concentration was calculated using 4 bytes (maybe this was to support the different range sensors?)

/*
Description:
This is a example code for Sandbox Electronics NDIR CO2 sensor module.
You can get one of those products on
http://sandboxelectronics.com

Version:
V1.2

Release Date:
2019-01-10

Author:
Tiequan Shao          support@sandboxelectronics.com

Lisence:
CC BY-NC-SA 3.0

Please keep the above information when you use this code in your project.
*/

#include <SoftwareSerial.h>
#include <NDIR_SoftwareSerial.h>
#define  RECEIVE_TIMEOUT  (100)

#if ARDUINO >= 100
    #include "Arduino.h"
#else
    #include "WProgram.h"
#endif

class SoftwareSerial;

uint8_t NDIR_SoftwareSerial::cmd_measure[9]                = {0xFF,0x01,0x9C,0x00,0x00,0x00,0x00,0x00,0x63};
uint8_t NDIR_SoftwareSerial::cmd_calibrateZero[9]          = {0xFF,0x01,0x87,0x00,0x00,0x00,0x00,0x00,0x78};
uint8_t NDIR_SoftwareSerial::cmd_enableAutoCalibration[9]  = {0xFF,0x01,0x79,0xA0,0x00,0x00,0x00,0x00,0xE6};
uint8_t NDIR_SoftwareSerial::cmd_disableAutoCalibration[9] = {0xFF,0x01,0x79,0x00,0x00,0x00,0x00,0x00,0x86};

NDIR_SoftwareSerial::NDIR_SoftwareSerial(uint8_t rx_pin, uint8_t tx_pin) : serial(rx_pin, tx_pin, false)
{
}


uint8_t NDIR_SoftwareSerial::begin()
{
    serial.begin(9600);

    if (measure()) {
        return true;
    } else {
        return false;
    }
}

uint8_t NDIR_SoftwareSerial::measure()
{
    uint8_t i;
    uint8_t buf[9];
    uint32_t start = millis();

    serial.flush();

    for (i=0; i<9; i++) {
        serial.write(cmd_measure[i]);
    }

    for (i=0; i<9;) {
        if (serial.available()) {
            buf[i++] = serial.read();
        }

        if (millis() - start > RECEIVE_TIMEOUT) {
            return false;
        }
    }

    if (parse(buf)) {
        return true;
    }

    return false;
}


void NDIR_SoftwareSerial::calibrateZero()
{
    uint8_t i;

    for (i=0; i<9; i++) {
        serial.write(cmd_calibrateZero[i]);
    }
}


void NDIR_SoftwareSerial::enableAutoCalibration()
{
    uint8_t i;

    for (i=0; i<9; i++) {
        serial.write(cmd_enableAutoCalibration[i]);
    }
}


void NDIR_SoftwareSerial::disableAutoCalibration()
{
    uint8_t i;

    for (i=0; i<9; i++) {
        serial.write(cmd_disableAutoCalibration[i]);
    }
}


uint8_t NDIR_SoftwareSerial::parse(uint8_t *pbuf)
{
    uint8_t i;
    uint8_t checksum = 0;

    for (i=0; i<9; i++) {
        checksum += pbuf[i];
    }

    if (pbuf[0] == 0xFF && pbuf[1] == 0x9C && checksum == 0xFF) {
        ppm = (uint32_t)pbuf[2] << 24 | (uint32_t)pbuf[3] << 16 | (uint32_t)pbuf[4] << 8 | pbuf[5];
        return true;
    } else {
        return false;
    }
}

The forth library I looked at was MHZ-Z-C02-Sensors by Tobias Schürg this library was for different series of MHZ sensors. With re-synching, configurable timeouts and checksum validation it looked like the code could easily be adapted for the MH-Z16.

/* MHZ library

    By Tobias Schürg
*/

#include "MHZ.h"

const int MHZ14A = 14;
const int MHZ19B = 19;

const int MHZ14A_RESPONSE_TIME = 60;
const int MHZ19B_RESPONSE_TIME = 120;

const int STATUS_NO_RESPONSE = -2;
const int STATUS_CHECKSUM_MISMATCH = -3;
const int STATUS_INCOMPLETE = -4;
const int STATUS_NOT_READY = -5;

unsigned long lastRequest = 0;

MHZ::MHZ(uint8_t rxpin, uint8_t txpin, uint8_t pwmpin, uint8_t type)
    : co2Serial(rxpin, txpin) {
  _rxpin = rxpin;
  _txpin = txpin;
  _pwmpin = pwmpin;
  _type = type;

  co2Serial.begin(9600);
}

/**
 * Enables or disables the debug mode (more logging).
 */
void MHZ::setDebug(boolean enable) {
  debug = enable;
  if (debug) {
    Serial.println(F("MHZ: debug mode ENABLED"));
  } else {
    Serial.println(F("MHZ: debug mode DISABLED"));
  }
}

boolean MHZ::isPreHeating() {
  if (_type == MHZ14A) {
    return millis() < (3 * 60 * 1000);
  } else if (_type == MHZ19B) {
    return millis() < (3 * 60 * 1000);
  } else {
    Serial.println(F("MHZ::isPreHeating() => UNKNOWN SENSOR"));
    return false;
  }
}

boolean MHZ::isReady() {
  if (isPreHeating()) return false;
  if (_type == MHZ14A)
    return lastRequest < millis() - MHZ14A_RESPONSE_TIME;
  else if (_type == MHZ19B)
    return lastRequest < millis() - MHZ19B_RESPONSE_TIME;
  else {
    Serial.print(F("MHZ::isReady() => UNKNOWN SENSOR \""));
    Serial.print(_type);
    Serial.println(F("\""));
    return true;
  }
}

int MHZ::readCO2UART() {
  if (!isReady()) return STATUS_NOT_READY;
  if (debug) Serial.println(F("-- read CO2 uart ---"));
  byte cmd[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
  byte response[9];  // for answer

  if (debug) Serial.print(F("  >> Sending CO2 request"));
  co2Serial.write(cmd, 9);  // request PPM CO2
  lastRequest = millis();

  // clear the buffer
  memset(response, 0, 9);

  int waited = 0;
  while (co2Serial.available() == 0) {
    if (debug) Serial.print(".");
    delay(100);  // wait a short moment to avoid false reading
    if (waited++ > 10) {
      if (debug) Serial.println(F("No response after 10 seconds"));
      co2Serial.flush();
      return STATUS_NO_RESPONSE;
    }
  }
  if (debug) Serial.println();

  // The serial stream can get out of sync. The response starts with 0xff, try
  // to resync.
  // TODO: I think this might be wrong any only happens during initialization?
  boolean skip = false;
  while (co2Serial.available() > 0 && (unsigned char)co2Serial.peek() != 0xFF) {
    if (!skip) {
      Serial.print(F("MHZ: - skipping unexpected readings:"));
      skip = true;
    }
    Serial.print(" ");
    Serial.print(co2Serial.peek(), HEX);
    co2Serial.read();
  }
  if (skip) Serial.println();

  if (co2Serial.available() > 0) {
    int count = co2Serial.readBytes(response, 9);
    if (count < 9) {
      co2Serial.flush();
      return STATUS_INCOMPLETE;
    }
  } else {
    co2Serial.flush();
    return STATUS_INCOMPLETE;
  }

  if (debug) {
    // print out the response in hexa
    Serial.print(F("  << "));
    for (int i = 0; i < 9; i++) {
      Serial.print(response[i], HEX);
      Serial.print(F("  "));
    }
    Serial.println(F(""));
  }

  // checksum
  byte check = getCheckSum(response);
  if (response[8] != check) {
    Serial.println(F("MHZ: Checksum not OK!"));
    Serial.print(F("MHZ: Received: "));
    Serial.println(response[8], HEX);
    Serial.print(F("MHZ: Should be: "));
    Serial.println(check, HEX);
    temperature = STATUS_CHECKSUM_MISMATCH;
    co2Serial.flush();
    return STATUS_CHECKSUM_MISMATCH;
  }

  int ppm_uart = 256 * (int)response[2] + response[3];

  temperature = response[4] - 44;  // - 40;

  byte status = response[5];
  if (debug) {
    Serial.print(F(" # PPM UART: "));
    Serial.println(ppm_uart);
    Serial.print(F(" # Temperature? "));
    Serial.println(temperature);
  }

  // Is always 0 for version 14a  and 19b
  // Version 19a?: status != 0x40
  if (debug && status != 0) {
    Serial.print(F(" ! Status maybe not OK ! "));
    Serial.println(status, HEX);
  } else if (debug) {
    Serial.print(F(" Status  OK: "));
    Serial.println(status, HEX);
  }

  co2Serial.flush();
  return ppm_uart;
}

uint8_t MHZ::getLastTemperature() {
  if (isPreHeating()) return STATUS_NOT_READY;
  return temperature;
}

byte MHZ::getCheckSum(byte* packet) {
  if (debug) Serial.println(F("  getCheckSum()"));
  byte i;
  unsigned char checksum = 0;
  for (i = 1; i < 8; i++) {
    checksum += packet[i];
  }
  checksum = 0xff - checksum;
  checksum += 1;
  return checksum;
}

int MHZ::readCO2PWM() {
  // if (!isReady()) return STATUS_NOT_READY; not needed?
  if (debug) Serial.print(F("-- reading CO2 from pwm "));
  unsigned long th, tl, ppm_pwm = 0;
  do {
    if (debug) Serial.print(".");
    th = pulseIn(_pwmpin, HIGH, 1004000) / 1000;
    tl = 1004 - th;
    ppm_pwm = 5000 * (th - 2) / (th + tl - 4);
  } while (th == 0);
  if (debug) {
    Serial.print(F("\n # PPM PWM: "));
    Serial.println(ppm_pwm);
  }
  return ppm_pwm;
}

The forth library I looked at was MHZ16_uart by Intar it had been updated recently, was quite lightweight, had timeouts, checksum & packet header/footer validation.

/*
  MHZ16_uart.cpp - MH-Z16 CO2 sensor library for ESP-32
  by Intar BV
  version 0.1
  
  License MIT
*/

#include "MHZ16_uart.h"
#include "Arduino.h"


#define WAIT_READ_TIMES	100
#define WAIT_READ_DELAY	10

// public

MHZ16_uart::MHZ16_uart(){
}
MHZ16_uart::MHZ16_uart(int rx, int tx){
	begin(rx,tx);
}

MHZ16_uart::~MHZ16_uart(){
}

#ifdef ARDUINO_ARCH_ESP32
void MHZ16_uart::begin(int rx, int tx, int s){
	_rx_pin = rx;
	_tx_pin = tx;
	_start_millis = millis();
	_serialno = s;
}
#else
void MHZ16_uart::begin(int rx, int tx){
	_rx_pin = rx;
	_start_millis = millis();
	_tx_pin = tx;
}
#endif

void MHZ16_uart::calibrateZero() {
	writeCommand( zerocalib );
}

void MHZ16_uart::calibrateSpan(int ppm) {
	if( ppm < 1000 )	return;

	uint8_t com[MHZ16_uart::REQUEST_CNT];
	for(int i=0; i<MHZ16_uart::REQUEST_CNT; i++) {
		com[i] = spancalib[i];
	}
	com[3] = (uint8_t)(ppm/256);
	com[4] = (uint8_t)(ppm%256);
	writeCommand( com );
}

int MHZ16_uart::getPPM() {
	return getSerialData();
}

boolean MHZ16_uart::isWarming(){
	return millis() <= _start_millis + PREHEAT_MS;
}

//protected
void MHZ16_uart::writeCommand(uint8_t cmd[]) {
	writeCommand(cmd,NULL);
}

void MHZ16_uart::writeCommand(uint8_t cmd[], uint8_t* response) {
#ifdef ARDUINO_ARCH_ESP32
	HardwareSerial hserial(_serialno);
	hserial.begin(9600, SERIAL_8N1, _rx_pin, _tx_pin);
#else
	SoftwareSerial hserial(_rx_pin, _tx_pin);
	hserial.begin(9600);
#endif
    hserial.write(cmd, REQUEST_CNT);
	hserial.write(MHZ16_checksum(cmd));
	hserial.flush();
	
	if (response != NULL) {
		int i = 0;
		while(hserial.available() <= 0) {
			if( ++i > WAIT_READ_TIMES ) {
				Serial.println("error: can't get MH-Z16 response.");
				return;
			}
			yield();
			delay(WAIT_READ_DELAY);
		}
		hserial.readBytes(response, MHZ16_uart::RESPONSE_CNT);
	}

}

//private

int MHZ16_uart::getSerialData() {
	uint8_t buf[MHZ16_uart::RESPONSE_CNT];
	for( int i=0; i<MHZ16_uart::RESPONSE_CNT; i++){
		buf[i]=0x0;
	}

	writeCommand(getppm, buf);
	int co2 = 0, co2temp = 0, co2status =  0;

	// parse
	if (buf[0] == 0xff && buf[1] == 0x86 && MHZ16_checksum(buf) == buf[MHZ16_uart::RESPONSE_CNT-1]) {
		co2 = buf[2] * 256 + buf[3];
	} else {
		co2 = co2temp = co2status = -1;
	}
	return co2;
}	

uint8_t MHZ16_uart::MHZ16_checksum( uint8_t com[] ) {
	uint8_t sum = 0x00;
	for ( int i = 1; i < MHZ16_uart::REQUEST_CNT; i++) {
		sum += com[i];
	}
	sum = 0xff - sum + 0x01;
	return sum;
}

It ran second time on one of my Arduino devices (after I figured out how to configure the serial port pins) and though intended for an ESP8266 device this is the library I will field test.

#include <MHZ16_uart.h>

//Select 2 digital pins as SoftwareSerial's Rx and Tx. For example, Rx=2 Tx=3
MHZ16_uart mySensor(4,5);

void setup()
{
  Serial.begin(9600);

  mySensor.begin(4,5); 
}


void loop() 
{
  if ( !mySensor.isWarming())
  {
    Serial.print("CO2 Concentration is ");
    Serial.print(mySensor.getPPM());
    Serial.println("ppm");
  }
  else
{
    Serial.println("isWarming");
  }
  
  delay(10000);
}

This was just a sample of the libraries I found on GitHub if I missed a good a library contact me via the comments.

Grove – Carbon Dioxide Sensor(MH-Z16) trial

In preparation for a student project to monitor the CO2 levels in a number of classrooms I purchased a Grove – Carbon Dioxide Sensor(MH-Z16) for evaluation.


Arduino Uno R3 and CO2 Sensor

I downloaded the seeedstudio wiki example code, compiled and uploaded it to one of my Arduino Uno R3 devices.

I increased delay between readings to 10sec and reduced the baud rate of the serial logging to 9600baud.

/*
  This test code is write for Arduino AVR Series(UNO, Leonardo, Mega)
  If you want to use with LinkIt ONE, please connect the module to D0/1 and modify:

  // #include <SoftwareSerial.h>
  // SoftwareSerial s_serial(2, 3);      // TX, RX

  #define sensor Serial1
*/


#include <SoftwareSerial.h>
SoftwareSerial s_serial(2, 3);      // TX, RX

#define sensor s_serial

const unsigned char cmd_get_sensor[] =
{
    0xff, 0x01, 0x86, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x79
};

unsigned char dataRevice[9];
int temperature;
int CO2PPM;

void setup()
{
    sensor.begin(9600);
    Serial.begin(9600);
    Serial.println("get a 'g', begin to read from sensor!");
    Serial.println("********************************************************");
    Serial.println();
}

void loop()
{
    if(dataRecieve())
    {
        Serial.print("Temperature: ");
        Serial.print(temperature);
        Serial.print("  CO2: ");
        Serial.print(CO2PPM);
        Serial.println("");
    }
    delay(10000);
}

bool dataRecieve(void)
{
    byte data[9];
    int i = 0;

    //transmit command data
    for(i=0; i<sizeof(cmd_get_sensor); i++)
    {
        sensor.write(cmd_get_sensor[i]);
    }
    delay(10);
    //begin reveiceing data
    if(sensor.available())
    {
        while(sensor.available())
        {
            for(int i=0;i<9; i++)
            {
                data[i] = sensor.read();
            }
        }
    }

    for(int j=0; j<9; j++)
    {
        Serial.print(data[j]);
        Serial.print(" ");
    }
    Serial.println("");

    if((i != 9) || (1 + (0xFF ^ (byte)(data[1] + data[2] + data[3] + data[4] + data[5] + data[6] + data[7]))) != data[8])
    {
        return false;
    }

    CO2PPM = (int)data[2] * 256 + (int)data[3];
    temperature = (int)data[4] - 40;

    return true;
}

The debug output wasn’t too promising there weren’t any C02 parts per million (ppm) values and the response payloads looked wrong. So I downloaded the MH-Z16 NDIR CO2 Sensor datasheet for some background. The datasheet didn’t mention any temperature data in the message payloads so I removed that code.

The response payload validation code was all on one line and hard to figure out what it was doing.

    if((i != 9) || (1 + (0xFF ^ (byte)(data[1] + data[2] + data[3] + data[4] + data[5] + data[6] + data[7]))) != data[8])
    {
        return false;
    }

To make debugging easier I split the payload validation code into several steps so I could see what was failing.

/*
  This test code is write for Arduino AVR Series(UNO, Leonardo, Mega)
  If you want to use with LinkIt ONE, please connect the module to D0/1 and modify:

  // #include <SoftwareSerial.h>
  // SoftwareSerial s_serial(2, 3);      // TX, RX

  #define sensor Serial1
*/


#include <SoftwareSerial.h>
SoftwareSerial s_serial(2, 3);      // TX, RX

#define sensor s_serial

const unsigned char cmd_get_sensor[] =
{
    0xff, 0x01, 0x86, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x79
};

unsigned char dataRevice[9];
int CO2PPM;

void setup()
{
    sensor.begin(9600);
    Serial.begin(9600);
    Serial.println("get a 'g', begin to read from sensor!");
    Serial.println("********************************************************");
    Serial.println();
}

void loop()
{
    if(dataRecieve())
    {
        Serial.print("  CO2: ");
        Serial.print(CO2PPM);
        Serial.println("");
    }
    delay(10000);
}

bool dataRecieve(void)
{
    byte data[9];
    int i = 0;

    //transmit command data
    for(i=0; i<sizeof(cmd_get_sensor); i++)
    {
        sensor.write(cmd_get_sensor[i]);
    }
    delay(10);
    //begin reveiceing data
    if(sensor.available())
    {
        while(sensor.available())
        {
            for(int i=0;i<9; i++)
            {
                data[i] = sensor.read();
            }
        }
    }

    for(int j=0; j<9; j++)
    {
        Serial.print(data[j]);
        Serial.print(" ");
    }
    Serial.println("");

    // First calculate then validate the check sum as there is no point in proceeding if the packet is corrupted. (code inspired by datasheet algorithm)
    byte checksum = 0 ;
    for(int j=1; j<8; j++)
    {
      checksum += data[j];
    }
    checksum=0xff-checksum; 
    checksum+=1;
       
    if  (checksum != data[8])
    {
      Serial.println("Error checksum");
      return false;
    }

    // Then check the start byte to make sure response is what we were expecting
    if ( data[0] != 0xFF )
    {
        Serial.println("Error start byte");
        return false;
    }

    // Then check the command byte to make sure response is what we were expecting
    if ( data[1] != 0x86 )
    {
        Serial.println("Error command");
        return false;
    }


    CO2PPM = (int)data[2] * 256 + (int)data[3];

    return true;
}

From these modifications I could see the payload was messed up and based on the datasheet message descriptions it looked like it was offset by a byte or two.

15:58:32.509 -> get a 'g', begin to read from sensor!
15:58:32.578 -> ********************************************************
15:58:32.612 -> 
15:58:32.612 -> 255 134 6 238 76 0 0 1 255 
15:58:32.647 -> Error checksum
15:58:42.631 -> 57 255 134 6 246 76 0 0 1 
15:58:42.666 -> Error checksum
15:58:52.667 -> 49 255 134 5 125 76 0 0 1 
15:58:52.702 -> Error checksum
15:59:02.704 -> 171 255 134 4 86 76 0 0 1 
15:59:02.750 -> Error checksum

I had a look at the code and the delay(10) after sending the sensor reading request message caught my attention. I have found that often delay(x) commands are used to “tweak” the code to get it to work.

These “tweaks” often break when code is run on a different device or sensor firmware is updated changing the timing of individual bytes, or request-response processes.

I removed the delay(10) replaced it with a serial.flush() and changed the code to display the payload bytes in hexadecimal.

/*
  This test code is write for Arduino AVR Series(UNO, Leonardo, Mega)
  If you want to use with LinkIt ONE, please connect the module to D0/1 and modify:

  // #include <SoftwareSerial.h>
  // SoftwareSerial s_serial(2, 3);      // TX, RX

  #define sensor Serial1
*/


#include <SoftwareSerial.h>
SoftwareSerial s_serial(2, 3);      // TX, RX

#define sensor s_serial

const unsigned char cmd_get_sensor[] =
{
    0xff, 0x01, 0x86, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x79
};

unsigned char dataRevice[9];
int CO2PPM;

void setup()
{
    sensor.begin(9600);
    Serial.begin(9600);
    Serial.println("get a 'g', begin to read from sensor!");
    Serial.println("********************************************************");
    Serial.println();
}

void loop()
{
    if(dataRecieve())
    {
        Serial.print("  CO2: ");
        Serial.print(CO2PPM);
        Serial.println("");
    }
    delay(10000);
}

bool dataRecieve(void)
{
    byte data[9];
    int i = 0;

    //transmit command data
    for(i=0; i<sizeof(cmd_get_sensor); i++)
    {
        sensor.write(cmd_get_sensor[i]);
    }
    Serial.flush();
    
    //begin reveiceing data
    if(sensor.available())
    {
        while(sensor.available())
        {
            for(int i=0;i<9; i++)
            {
                data[i] = sensor.read();
            }
        }
    }

    for(int j=0; j<9; j++)
    {
        Serial.print(data[j],HEX);
        Serial.print(" ");
    }
    Serial.println("");

    // First calculate then validate the check sum as there is no point in proceeding if the packet is corrupted. (code inspired by datasheet algorithm)
    byte checksum = 0 ;
    for(int j=1; j<8; j++)
    {
      checksum += data[j];
    }
    checksum=0xff-checksum; 
    checksum+=1;
       
    if  (checksum != data[8])
    {
      Serial.println("Error checksum");
      return false;
    }

    // Then check the start byte to make sure response is what we were expecting
    if ( data[0] != 0xFF )
    {
        Serial.println("Error start byte");
        return false;
    }

    // Then check the command byte to make sure response is what we were expecting
    if ( data[1] != 0x86 )
    {
        Serial.println("Error command");
        return false;
    }


    CO2PPM = (int)data[2] * 256 + (int)data[3];

    return true;
}

The initial values from the sensor were a bit high, but after leaving the device running for 3 minutes (Preheat time in the documentation) they settled down into a reasonable range

16:14:31.686 -> get a 'g', begin to read from sensor!
16:14:31.721 -> ********************************************************
16:14:31.789 -> 
16:14:31.789 -> 255 134 6 224 75 0 0 1 72 
16:14:31.823 ->   CO2: 1760
16:14:41.824 -> 255 134 6 224 75 0 0 1 72 
16:14:41.824 ->   CO2: 1760
16:14:51.824 -> 255 134 5 189 75 0 0 1 108 
16:14:51.858 ->   CO2: 1469
16:15:01.868 -> 255 134 3 157 75 0 0 1 142 
16:15:01.868 ->   CO2: 925
16:15:11.857 -> 255 134 3 223 75 0 0 1 76 
16:15:11.892 ->   CO2: 991
16:15:21.882 -> 255 134 6 56 75 0 0 1 240 
16:15:21.917 ->   CO2: 1592
16:15:31.911 -> 255 134 4 186 75 0 0 1 112 
16:15:31.945 ->   CO2: 1210
16:15:41.927 -> 255 134 3 131 75 0 0 1 168 
16:15:41.962 ->   CO2: 899
16:15:51.940 -> 255 134 3 30 75 0 0 1 13 
16:15:51.975 ->   CO2: 798
16:16:01.986 -> 255 134 2 201 75 0 0 1 99 
16:16:01.986 ->   CO2: 713
16:16:11.985 -> 255 134 4 133 75 0 0 1 165 
16:16:12.019 ->   CO2: 1157
16:16:22.020 -> 255 134 6 62 75 0 0 1 234 
16:16:22.053 ->   CO2: 1598
16:16:32.041 -> 255 134 5 80 75 0 0 1 217 
16:16:32.041 ->   CO2: 1360
16:16:42.057 -> 255 134 3 204 75 0 0 1 95 
16:16:42.092 ->   CO2: 972
16:16:52.084 -> 255 134 3 191 75 0 0 1 108 
16:16:52.084 ->   CO2: 959
16:17:02.102 -> 255 134 2 230 75 0 0 1 70 
16:17:02.102 ->   CO2: 742
16:17:12.094 -> 255 134 3 106 75 0 0 1 193 
16:17:12.129 ->   CO2: 874
16:17:22.111 -> 255 134 2 227 75 0 0 1 73 
16:17:22.145 ->   CO2: 739
16:17:32.139 -> 255 134 3 225 75 0 0 1 74 
16:17:32.172 ->   CO2: 993
16:17:42.170 -> 255 134 3 109 75 0 0 1 190 
16:17:42.204 ->   CO2: 877
16:17:52.174 -> 255 134 2 188 75 0 0 1 112 
16:17:52.207 ->   CO2: 700
16:18:02.218 -> 255 134 2 70 75 0 0 1 230 
16:18:02.253 ->   CO2: 582
16:18:12.239 -> 255 134 2 163 75 0 0 1 137 
16:18:12.239 ->   CO2: 675
16:18:22.251 -> 255 134 2 110 75 0 0 1 190 
16:18:22.285 ->   CO2: 622
16:18:32.246 -> 255 134 2 83 75 0 0 1 217 
16:18:32.280 ->   CO2: 595
16:18:42.277 -> 255 134 2 48 75 0 0 1 252 
16:18:42.312 ->   CO2: 560
16:18:52.305 -> 255 134 2 62 75 0 0 1 238 
16:18:52.339 ->   CO2: 574

Bill of materials (prices as at Jan 2019)

After these tentative fixes for the MH-Z16 sensor I think going to see if there are any other libraries written by someone smarter than me available.

Grove Base Hat for Raspberry PI Windows 10 IoT Core

After some experimentation I have a proof of concept Windows 10 IoT Core library for accessing the Analog to Digital Convertor (ADC) on a Grove Base Hat for Raspberry PI.

I can read the raw, voltage & % values just fine but the Version number isn’t quite what I expected. In the python sample code I can see the register numbers etc.

def __init__(self, address=0x04):
self.address = address
self.bus = grove.i2c.Bus()

def read_raw(self, channel):
addr = 0x10 + channel
return self.read_register(addr)

# read input voltage (mV)
def read_voltage(self, channel):
addr = 0x20 + channel
return self.read_register(addr)

# input voltage / output voltage (%)
def read(self, channel):
addr = 0x30 + channel
return self.read_register(addr)

@property
def name(self):
id = self.read_register(0x0)
if id == RPI_HAT_PID:
return RPI_HAT_NAME
elif id == RPI_ZERO_HAT_PID:
return RPI_ZERO_HAT_NAME

@property
def version(self):
return self.read_register(0x3)

When I read register 0x3 to get the version info the value changes randomly. Format = register num, byte value, word value

0,4,4 1,134,10374 2,2,2 3,82,79 4,0,0 5,0,0 6,0,0 7,0,0 8,0,0 9,0,0 10,0,0 11,0,0 12,0,0 13,0,0 14,0,0 15,0,0 
0,4,4 1,134,10374 2,2,2 3,86,69 4,0,0 5,0,0 6,0,0 7,0,0 8,0,0 9,0,0 10,0,0 11,0,0 12,0,0 13,0,0 14,0,0 15,0,0 
0,4,4 1,134,10374 2,2,2 3,32,66 4,0,0 5,0,0 6,0,0 7,0,0 8,0,0 9,0,0 10,0,0 11,0,0 12,0,0 13,0,0 14,0,0 15,0,0 

It looks like register 1 or 2 (134/10374 or 2/2) might contain the device version information.

The code is available on GitHub here. Next time I purchase some gear from Seeedstudio I’ll include a Grove Base Hat For Raspberry PI Zero and extend the software so they work as well.

public sealed class StartupTask : IBackgroundTask
{
   private ThreadPoolTimer timer;
   private BackgroundTaskDeferral deferral;
   AnalogPorts analogPorts = new AnalogPorts();

   public void Run(IBackgroundTaskInstance taskInstance)
   {
      deferral = taskInstance.GetDeferral();

      analogPorts.Initialise();

      byte version = analogPorts.Version();
      Debug.WriteLine($"Version {version}");

      double powerSupplyVoltage = analogPorts.PowerSupplyVoltage();
      Debug.WriteLine($"Power supply voltage {powerSupplyVoltage}v");

      timer = ThreadPoolTimer.CreatePeriodicTimer(AnalogPorts, TimeSpan.FromSeconds(5));
   }

   void AnalogPorts(ThreadPoolTimer timer)
   {
      try
      {
         ushort valueRaw;
         valueRaw = analogPorts.ReadRaw(AnalogPorts.AnalogPort.A0);
         Debug.WriteLine($"A0 Raw {valueRaw}");

         double valueVoltage;
         valueVoltage = analogPorts.ReadVoltage(AnalogPorts.AnalogPort.A0);
         Debug.WriteLine($"A0 {valueVoltage}v");

         double value;
         value = analogPorts.Read(AnalogPorts.AnalogPort.A0);
         Debug.WriteLine($"A0 {value}");
      }
      catch (Exception ex)
      {
         Debug.WriteLine($"AnalogPorts Read failed {ex.Message}");
      }
   }
}

Azure Meetup-Budget tank of 91 IoT

The premise of my Azure Meetup presentation was could you build an interesting project on a rainy weekend afternoon with a constrained budget (tank of 91 octane petrol) and minimal soldering .

Budget

Our family car is a VW Passat V6 4Motion which has a 62 Litre tank. The driver usually doesn’t usually stop to fill up until the fuel light has been on for a bit which helped.

PetrolReceipt

Based on the most recent receipt the budget was NZD132.

Where possible I purchased parts locally (the tech equivalent of food miles) or on special.

My bill of materials (prices as at 2018-06) was on budget.

The devDuino V2.2 and nRF24L01 module were USD26.20 approx. NZD37.50 (including freight) from elecrow.

Tradeoffs

I powered my Raspberry PI with a spare cellphone charger (make sure it can supply enough current to reliably power the device).

The devDuino V2.has an ATSHA204A which provides a guaranteed unique 72-bit serial number (makes it harder to screw up provisioning devices in the field).

I use a 32G MicroSD rather than a 16G MicroSD card as I have had issued with 16G cards getting corrupted by more recent upgrades (possibly running out of space?)

The Raspberry PI shield requires a simple modification to enable interrupt driven operation.

My sample devDuino V2.2 client uses an external temperature and humidity sensor, modifying this code to use the onboard temperature sensor an MCP9700 will be covered in another post.

The devDuino V2 is a little bit cheaper USD15.99 NZD37.31, has the same onboard temperature sensor as the V2.2 but no unique serial number chip.

The devDuino V4.0 has an onboard HTU21D temperature + humidity sensor but no unique serial number and the batteries are expensive.

The code and deployment instructions for the nRF24L01 field gateway applications for AdaFruit.IO and Azure IoT Hub/Azure IoT Central are available on hackster.IO.

RPiWithnRF24Plate

AdaFruit.IO has free and USD10.00/month options which work well for many hobbyist projects.

AdaFruitIO

AdaFruit IO basic Netduino HTTP client

I use Netduino devices for teaching and my students often build projects which need a cloud based service like AdaFruit.IO to capture, store and display their sensor data.

My Proof of Concept (PoC) which uses a slightly modified version of the AdaFruit.IO basic desktop HTTP client code has been running on several Netduino 2 Plus, Netduino 3 Ethernet and Netduino 3 Wifi devices for the last couple of days and looks pretty robust.

The Netduino 3 Wifi device also supports https for improved security and privacy. They also make great field gateways as they can run off solar/battery power.

N2PN3WDashBoard

The devices have been uploading temperature and humidity measurements from a Silicon labs Si7005 sensor. (Outside sensor suffering from sunstrike)

N3WifiTemperatureAndHumiditySensor

program.cs

*

Copyright ® 2017 December devMobile Software, All Rights Reserved

THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
PURPOSE.

http://www.devmobile.co.nz

*/
using System;
using System.Net;
using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Net.NetworkInformation;
using SecretLabs.NETMF.Hardware.Netduino;
using devMobile.NetMF.Sensor;
using devMobile.IoT.NetMF;

namespace devMobile.IoT.AdaFruitIO.NetMF.Client
{
   public class Program
   {
      private const string adaFruitIOApiBaseUrl = @"https://IO.adafruit.com/api/v2/";
      private const string group = "netduino3";
      private const string temperatureFeedKey = "t";
      private const string humidityFeedKey = "h";
      private const string adaFruitUserName = "YourUserName";
      private const string adaFruitIOApiKey = "YourAPIKey";
      private static readonly TimeSpan timerDueAfter = new TimeSpan(0, 0, 15);
      private static readonly TimeSpan timerPeriod = new TimeSpan(0, 0, 30);
      private static OutputPort led = new OutputPort(Pins.ONBOARD_LED, false);
      private static SiliconLabsSI7005 sensor = new SiliconLabsSI7005();
      private static AdaFruitIoClient adaFruitIoClient = new AdaFruitIoClient(adaFruitUserName, adaFruitIOApiKey, adaFruitIOApiBaseUrl);

      public static void Main()
      {
         // Wait for Network address if DHCP
         NetworkInterface networkInterface = NetworkInterface.GetAllNetworkInterfaces()[0];
         if (networkInterface.IsDhcpEnabled)
         {
            Debug.Print(" Waiting for DHCP IP address");

            while (NetworkInterface.GetAllNetworkInterfaces()[0].IPAddress == IPAddress.Any.ToString())
            {
               Debug.Print(" .");
               led.Write(!led.Read());
               Thread.Sleep(250);
            }
            led.Write(false);
         }

         // Display network config for debugging
         Debug.Print("Network configuration");
         Debug.Print(" Network interface type : " + networkInterface.NetworkInterfaceType.ToString());
         Debug.Print(" MAC Address : " + BytesToHexString(networkInterface.PhysicalAddress));
         Debug.Print(" DHCP enabled : " + networkInterface.IsDhcpEnabled.ToString());
         Debug.Print(" Dynamic DNS enabled : " + networkInterface.IsDynamicDnsEnabled.ToString());
         Debug.Print(" IP Address : " + networkInterface.IPAddress.ToString());
         Debug.Print(" Subnet Mask : " + networkInterface.SubnetMask.ToString());
         Debug.Print(" Gateway : " + networkInterface.GatewayAddress.ToString());

         foreach (string dnsAddress in networkInterface.DnsAddresses)
         {
            Debug.Print(" DNS Server : " + dnsAddress.ToString());
         }

         Timer humidityAndtemperatureUpdates = new Timer(HumidityAndTemperatureTimerProc, null, timerDueAfter, timerPeriod);

         Thread.Sleep(Timeout.Infinite);
      }

      static private void HumidityAndTemperatureTimerProc(object state)
      {
         led.Write(true);

         try
         {
            double humidity = sensor.Humidity();

            Debug.Print(" Humidity " + humidity.ToString("F0") + "%");
            adaFruitIoClient.FeedUpdate(group, humidityFeedKey, humidity.ToString("F0"));
         }
         catch (Exception ex)
         {
            Debug.Print("Humidifty read+update failed " + ex.Message);

            return;
         }

         try
         {
            double temperature = sensor.Temperature();

            Debug.Print(" Temperature " + temperature.ToString("F1") + "°C");
            adaFruitIoClient.FeedUpdate(group, temperatureFeedKey, temperature.ToString("F1"));
         }
         catch (Exception ex)
         {
            Debug.Print("Temperature read+update failed " + ex.Message);

            return;
         }

         led.Write(false);
      }

      private static string BytesToHexString(byte[] bytes)
      {
         string hexString = string.Empty;

         // Create a character array for hexidecimal conversion.
         const string hexChars = "0123456789ABCDEF";

         // Loop through the bytes.
         for (byte b = 0; b < bytes.Length; b++)          {             if (b > 0)
               hexString += "-";

            // Grab the top 4 bits and append the hex equivalent to the return string.
            hexString += hexChars[bytes[b] >> 4];

            // Mask off the upper 4 bits to get the rest of it.
            hexString += hexChars[bytes[b] & 0x0F];
         }

         return hexString;
      }
   }
}

AdaFruit.IO client.cs, handles feed groups and individual feeds

/*

Copyright ® 2017 December devMobile Software, All Rights Reserved

THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
PURPOSE.

http://www.devmobile.co.nz

*/
using System;
using System.IO;
using System.Net;
using System.Text;
using Microsoft.SPOT;

namespace devMobile.IoT.NetMF
{
   public class AdaFruitIoClient
   {
      private const string apiBaseUrlDefault = @"http://IO.adafruit.com/api/v2/";
      private string apiBaseUrl = "";
      private string userName = "";
      private string apiKey = "";
      private int httpRequestTimeoutmSec;
      private int httpRequestReadWriteTimeoutmSec;

      public AdaFruitIoClient(string userName, string apiKey, string apiBaseUrl = apiBaseUrlDefault, int httpRequestTimeoutmSec = 2500, int httpRequestReadWriteTimeoutmSec = 5000)
      {
         this.apiBaseUrl = apiBaseUrl;
         this.userName = userName;
         this.apiKey = apiKey;
         this.httpRequestReadWriteTimeoutmSec = httpRequestReadWriteTimeoutmSec;
         this.httpRequestTimeoutmSec = httpRequestTimeoutmSec;
      }

      public void FeedUpdate(string group, string feedKey, string value)
      {
         string feedUrl;

         if (group.Trim() == string.Empty)
         {
            feedUrl = apiBaseUrl + userName + @"/feeds/" + feedKey + @"/data";
         }
         else
         {
            feedUrl = apiBaseUrl + userName + @"/feeds/" + group.Trim() + "." + feedKey + @"/data";
         }

         HttpWebRequest request = (HttpWebRequest)WebRequest.Create(feedUrl);
         {
            string payload = @"{""value"": """ + value + @"""}";
            byte[] buffer = Encoding.UTF8.GetBytes(payload);

            DateTime httpRequestedStartedAtUtc = DateTime.UtcNow;

            request.Method = "POST";
            request.ContentLength = buffer.Length;
            request.ContentType = @"application/json";
            request.Headers.Add("X-AIO-Key", apiKey);
            request.KeepAlive = false;
            request.Timeout = this.httpRequestTimeoutmSec;
            request.ReadWriteTimeout = this.httpRequestReadWriteTimeoutmSec;

            using (Stream stream = request.GetRequestStream())
            {
               stream.Write(buffer, 0, buffer.Length);
            }

            using (var response = (HttpWebResponse)request.GetResponse())
            {
               Debug.Print(" Status: " + response.StatusCode + " : " + response.StatusDescription);
            }

            TimeSpan duration = DateTime.UtcNow - httpRequestedStartedAtUtc;
            Debug.Print(" Duration: " + duration.ToString());
         }
      }
   }
}

Bill of materials for PoC

Mikrobus.Net Quail, Weather & nRF-C clicks and xively

My next proof of concept uses a Weather click and nRF C click to upload temperature and humidity data to a Xively gateway running on a spare Netduino 2 Plus. I have a couple of Azure Event hub gateways (direct & queued) which require a Netduino 3 Wifi (for TLS/AMQPS support) and I’ll build a client for them in a coming post.

I initially purchased an nRF T click but something wasn’t quite right with its interrupt output. The interrupt line wasn’t getting pulled low at all so there were no send success/failure events. If I disabled the pull up resistor and strobed the interrupt pin on start-up the device would work for a while.


using (OutputPort Int = new OutputPort(socket.Int, true))
{
 Int.Write(true);
};

...

_irqPin = new InterruptPort(socket.Int, false, Port.ResistorMode.Disabled, Port.InterruptMode.InterruptEdgeLow);

The code sends a reading every 10 seconds and has been running for a couple of days. It strobes Led1 for each successful send and turns on Led2 when a send fails.

private static readonly byte[] deviceAddress = Encoding.UTF8.GetBytes(&quot;Quail&quot;);
private static readonly byte[] gatewayAddress = Encoding.UTF8.GetBytes(&quot;12345&quot;);
private const byte gatewayChannel = 10;
private const NRFC.DataRate gatewayDataRate = NRFC.DataRate.DR1Mbps;
private const int XivelyUpdateDelay = 10000;
private const char XivelyGatewayChannelIdTemperature = 'J';
private const char XivelyGatewayChannelIdHumidity = 'K';

public static void Main()
{
   NRFC nRF24Click = new NRFC(Hardware.SocketFour);
   nRF24Click.Configure(deviceAddress, gatewayChannel, gatewayDataRate);
   nRF24Click.OnTransmitFailed += nRF24Click_OnTransmitFailed;
   nRF24Click.OnTransmitSuccess += nRF24Click_OnTransmitSuccess;
   nRF24Click.Enable();

   // Configure the weather click
   WeatherClick weatherClick = new WeatherClick(Hardware.SocketOne, WeatherClick.I2CAddresses.Address0);
   weatherClick.SetRecommendedMode(WeatherClick.RecommendedModes.WeatherMonitoring);

   Thread.Sleep(XivelyUpdateDelay);

   while (true)
   {
      string temperatureMessage = XivelyGatewayChannelIdTemperature + weatherClick.ReadTemperature().ToString("F1");
      Debug.Print(temperatureMessage);
      MBN.Hardware.Led1.Write(true);
      nRF24Click.SendTo(gatewayAddress, Encoding.UTF8.GetBytes(temperatureMessage));

      Thread.Sleep(XivelyUpdateDelay);

      string humidityMessage = XivelyGatewayChannelIdHumidity + weatherClick.ReadHumidity().ToString("F1");
      Debug.Print(humidityMessage);
      MBN.Hardware.Led1.Write(true);
      nRF24Click.SendTo(gatewayAddress, Encoding.UTF8.GetBytes(humidityMessage));

      Thread.Sleep(XivelyUpdateDelay);
   }
}

static void nRF24Click_OnTransmitSuccess()
{
   MBN.Hardware.Led1.Write(false);
   if (MBN.Hardware.Led2.Read())
   {
      MBN.Hardware.Led2.Write(false);
   }

   Debug.Print("nRF24Click_OnTransmitSuccess");
}

static void nRF24Click_OnTransmitFailed()
{
   MBN.Hardware.Led2.Write(true);

   Debug.Print("nRF24Click_OnTransmitFailed");
}

I need to have a look at interfacing some more sensors and soak testing the solution.

The MikroBus.Net team have done a great job with the number & quality of the drivers they have available.