iwanders/plainRFM69 revisited

After problems with interleaved interrupt handling in my Windows 10 IoT Core client I figured the AutoMode used by the plainRFM69 library might be worth investigation. My first Arduino client was based on the plainRFM69 library but had Interoperability issues.

For this attempt I also started with the minimal sample and modified the code to send and receive text messages.

/*
    Copyright (c) 2014, Ivor Wanders, Bryn Lewis 2019
    MIT License, see the LICENSE.md file in the root folder.
*/

#include <SPI.h>
#include <plainRFM69.h>

// slave select pin.
#define SLAVE_SELECT_PIN 10

// connected to the reset pin of the RFM69.
#define RESET_PIN 9

// tie this pin down on the receiver.
#define SENDER_DETECT_PIN A0

const uint8_t tx_buffer[] = "ABCDEFGHIJKLMNOPQRSTURWXYZ1234567890";
//const uint8_t tx_buffer[] = "abcdefghijklmnopqrstuvwxyz1234567890";
uint8_t rx_buffer[sizeof(tx_buffer)] = "";

plainRFM69 rfm = plainRFM69(SLAVE_SELECT_PIN);


void sender() {

  uint32_t start_time = millis();

  uint32_t counter = 1; // the counter which we are going to send.

  while (true) {
    rfm.poll(); // run poll as often as possible.

    if (!rfm.canSend()) {
      continue; // sending is not possible, already sending.
    }

    if ((millis() - start_time) > 1000) { // every 500 ms.
      start_time = millis();

      // be a little bit verbose.
      Serial.print("Send:"); Serial.println(counter);

      // send the number of bytes equal to that set with setPacketLength.
      // read those bytes from memory where counter starts.
      rfm.sendVariable(tx_buffer, counter);

      counter++; // increase the counter.

      if ( counter > strlen(tx_buffer))
      {
        counter = 1;
      }
    }
  }
}

void receiver() {
  uint32_t counter = 0; // to count the messages.

  while (true) {

    rfm.poll(); // poll as often as possible.

    while (rfm.available())
    {
      uint8_t len = rfm.read(rx_buffer); // read the packet into the new_counter.

      // print verbose output.
      Serial.print("Packet Len:");
      Serial.print( len );
      Serial.print(" : ");
      Serial.println((char*)rx_buffer);
    }
  }
}

void setup() {
  Serial.begin(9600);
  SPI.begin();

  bareRFM69::reset(RESET_PIN); // sent the RFM69 a hard-reset.

  //rfm.setRecommended(); // set recommended paramters in RFM69.
  rfm.setPacketType(true, false); // set the used packet type.

  rfm.setBufferSize(2);   // set the internal buffer size.
  rfm.setPacketLength(sizeof(rx_buffer)); // set the packet length.

  rfm.setFrequency((uint32_t)909560000); // set the frequency.

  rfm.setLNA(RFM69_LNA_IMP_200OHM, RFM69_LNA_GAIN_AGC_LOOP);

  // p71, 3 preamble bytes.
  rfm.setPreambleSize(16);

  // p71, 4 bytes sync of 0x01, only start listening when sync is matched.
  //uint8_t syncthing[] = {0xaa, 0x2d, 0xd4};
  uint8_t syncthing[] = {0xd4, 0x2d, 0xaa};
  rfm.setSyncConfig(true, false, sizeof(syncthing), 0);
  rfm.setSyncValue(&syncthing, sizeof(syncthing));

  rfm.dumpRegisters(Serial);

  // baudrate is default, 4800 bps now.

  rfm.receive();
  // set it to receiving mode.

  pinMode(SENDER_DETECT_PIN, INPUT_PULLUP);
  delay(5);
}

void loop() {
  if (digitalRead(SENDER_DETECT_PIN) == LOW) {
    Serial.println("Going Receiver!");
    receiver();
    // this function never returns and contains an infinite loop.
  } else {
    Serial.println("Going sender!");
    sender();
    // idem.
  }
}

I took the list register values and loaded them into a Excel spreadsheet alongside the values from my Windows 10 IoT Core application

17:35:03.044 -> 0x0: 0x0
17:35:03.078 -> 0x1: 0x4
17:35:03.078 -> 0x2: 0x0
17:35:03.078 -> 0x3: 0x1A
17:35:03.112 -> 0x4: 0xB
17:35:03.112 -> 0x5: 0x0
17:35:03.112 -> 0x6: 0x52
17:35:03.146 -> 0x7: 0xE3
17:35:03.146 -> 0x8: 0x63
17:35:03.146 -> 0x9: 0xD7
17:35:03.180 -> 0xA: 0x41
17:35:03.180 -> 0xB: 0x40
17:35:03.180 -> 0xC: 0x2
17:35:03.215 -> 0xD: 0x92
17:35:03.215 -> 0xE: 0xF5
17:35:03.249 -> 0xF: 0x20
17:35:03.249 -> 0x10: 0x24
17:35:03.249 -> 0x11: 0x9F
17:35:03.282 -> 0x12: 0x9
17:35:03.282 -> 0x13: 0x1A
17:35:03.282 -> 0x14: 0x40
17:35:03.317 -> 0x15: 0xB0
17:35:03.317 -> 0x16: 0x7B
17:35:03.317 -> 0x17: 0x9B
17:35:03.317 -> 0x18: 0x88
17:35:03.351 -> 0x19: 0x86
17:35:03.351 -> 0x1A: 0x8A
17:35:03.384 -> 0x1B: 0x40
17:35:03.384 -> 0x1C: 0x80
17:35:03.384 -> 0x1D: 0x6
17:35:03.418 -> 0x1E: 0x10
17:35:03.418 -> 0x1F: 0x0
17:35:03.452 -> 0x20: 0x0
17:35:03.452 -> 0x21: 0x0
17:35:03.452 -> 0x22: 0x0
17:35:03.487 -> 0x23: 0x2
17:35:03.487 -> 0x24: 0xFF
17:35:03.487 -> 0x25: 0x0
17:35:03.521 -> 0x26: 0x5
17:35:03.521 -> 0x27: 0x80
17:35:03.521 -> 0x28: 0x0
17:35:03.556 -> 0x29: 0xFF
17:35:03.556 -> 0x2A: 0x0
17:35:03.556 -> 0x2B: 0x0
17:35:03.556 -> 0x2C: 0x0
17:35:03.590 -> 0x2D: 0x10
17:35:03.590 -> 0x2E: 0x90
17:35:03.624 -> 0x2F: 0xAA
17:35:03.624 -> 0x30: 0x2D
17:35:03.624 -> 0x31: 0xD4
17:35:03.659 -> 0x32: 0x0
17:35:03.659 -> 0x33: 0x0
17:35:03.659 -> 0x34: 0x0
17:35:03.693 -> 0x35: 0x0
17:35:03.693 -> 0x36: 0x0
17:35:03.728 -> 0x37: 0xD0
17:35:03.728 -> 0x38: 0x25
17:35:03.728 -> 0x39: 0x0
17:35:03.761 -> 0x3A: 0x0
17:35:03.761 -> 0x3B: 0x0
17:35:03.761 -> 0x3C: 0x1
17:35:03.795 -> 0x3D: 0x0
17:35:03.795 -> Going sender!
17:35:04.725 -> Send:1

Arduino RFM69HCW Client in receive mode

First thing I noticed was the order of the three sync byes (Registers 0x2F, 0x30, 0x31) was reversed. I then modified the run method in the Windows 10 code so the registers settings on both devices matched. (I removed the PlainRFM69 SetRecommended call so as many of the default options as possible were used).

public void Run(IBackgroundTaskInstance taskInstance)
{
	byte[] syncValues = { 0xAA, 0x2D, 0xD4 };
	byte[] aesKeyValues = { 0x0, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0X0E, 0X0F };

	try
	{
		rfm69Device.Initialise(Rfm69HcwDevice.RegOpModeMode.StandBy
										,frequency: 909560000.0 
										,dio0Mapping: Rfm69HcwDevice.Dio0Mapping.ReceiveCrcOk
										,preambleSize: 16												
										,syncValues: syncValues
										,packetFormat: Rfm69HcwDevice.RegPacketConfig1PacketFormat.VariableLength
										,packetDcFree: Rfm69HcwDevice.RegPacketConfig1DcFree.Whitening
										,autoRestartRx: false
										//,addressNode: 0x22
										//,addressbroadcast: 0x99
										//,aesKey: aesKeyValues
										);

		rfm69Device.OnReceive += Rfm69Device_OnReceive;
		rfm69Device.OnTransmit += Rfm69Device_OnTransmit;

		rfm69Device.RegisterDump();
		rfm69Device.SetMode(Rfm69HcwDevice.RegOpModeMode.Receive);


		while (true)
		{
			if (true)
			{
				string message = $"hello world {Environment.MachineName} {DateTime.Now:hh-mm-ss}";

				byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes(message);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-{1}", DateTime.Now, message);
				//rfm69Device.SendMessage( 0x11, messageBuffer);
				rfm69Device.SendMessage(messageBuffer);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

				Task.Delay(5000).Wait();
			}
			else
			{
				Debug.Write(".");
				Task.Delay(1000).Wait();
			}
		}
	}
	catch (Exception ex)
	{
		Debug.WriteLine(ex.Message);
	}
}

I also found an error with the declaration of the RegPacketConfig1DcFree enumeration (Whitening = 0b0100000 vs. Whitening = 0b01000000) which wouldn’t have helped.

public enum RegPacketConfig1DcFree : byte
{
	None = 0b00000000,
	Manchester = 0b00100000,
	Whitening = 0b01000000,
	Reserved = 0b01100000,
}
const RegPacketConfig1DcFree RegPacketConfig1DcFreeDefault = RegPacketConfig1DcFree.None;

I could then reliably sent messages to and receive messages from my Arduino Nano Radio Shield RFM69/95 device

Register 0x4c - Value 0X00 - Bits 00000000
Register 0x4d - Value 0X00 - Bits 00000000
...
17:55:53.559 Received 1 byte message A CRC Ok True
.17:55:54.441 Received 2 byte message AB CRC Ok True
.17:55:55.444 Received 3 byte message ABC CRC Ok True
.17:55:56.447 Received 4 byte message ABCD CRC Ok True
.17:55:57.449 Received 5 byte message ABCDE CRC Ok True
.17:55:58.453 Received 6 byte message ABCDEF CRC Ok True
The thread 0x578 has exited with code 0 (0x0).
.17:55:59.622 Received 7 byte message ABCDEFG CRC Ok True
.17:56:00.457 Received 8 byte message ABCDEFGH CRC Ok True
.17:56:01.460 Received 9 byte message ABCDEFGHI CRC Ok True
.17:56:02.463 Received 10 byte message ABCDEFGHIJ CRC Ok True
..17:56:03.955 Received 11 byte message ABCDEFGHIJK CRC Ok True
17:56:04.583 Received 12 byte message ABCDEFGHIJKL CRC Ok True

I did some investigation into that the plainRMF69 code and found the ReadMultiple and WriteMuliple methods reverse the byte order

void bareRFM69::writeMultiple(uint8_t reg, void* data, uint8_t len){
    SPI.beginTransaction(SPISettings(10000000, MSBFIRST, SPI_MODE0));  // gain control of SPI bus
    this->chipSelect(true); // assert chip select
    SPI.transfer(RFM69_WRITE_REG_MASK | (reg & RFM69_READ_REG_MASK)); 
    uint8_t* r = reinterpret_cast<uint8_t*>(data);
    for (uint8_t i=0; i < len ; i++){
        SPI.transfer(r[len - i - 1]);
    }
    this->chipSelect(false);// deassert chip select
    SPI.endTransaction();    // release the SPI bus
}

void bareRFM69::readMultiple(uint8_t reg, void* data, uint8_t len){
    SPI.beginTransaction(SPISettings(10000000, MSBFIRST, SPI_MODE0));  // gain control of SPI bus
    this->chipSelect(true); // assert chip select
    
    SPI.transfer((reg % RFM69_READ_REG_MASK));
    uint8_t* r = reinterpret_cast<uint8_t*>(data);
    for (uint8_t i=0; i < len ; i++){
        r[len - i - 1] = SPI.transfer(0);
    }
    this->chipSelect(false);// deassert chip select
    SPI.endTransaction();    // release the SPI bus
}

I won’t be able to use interrupt AutoMode clients with the EasySensors shields as the DIO2 pin is not connected but on the AdaFruit RFM69HCW Radio Bonnet 433MHz or 915MHz it is connected to GPIO24.

RFM69 hat library Part12A

Enums and Masks

Based on the approach I used in my RFM9X library this refactor adds enumerations and constants for initialising and then accessing the registers of the RFM69CW/RFM69HCW module (based on the Semtech SX1231/SX1231H) .

Adafruit RFM69 Radio Bonnet

There is now a even less code in the Run method in the startup.cs file and the code for configuring the RFM69 is more obvious

public sealed class StartupTask : IBackgroundTask
{
	private const int ResetPin = 25;
	private const int InterruptPin = 22;
	private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectPin.CS1, ResetPin, InterruptPin);

	public void Run(IBackgroundTaskInstance taskInstance)
	{
		byte[] syncValues ={0xAA, 0x2D, 0xD4};

		rfm69Device.Initialise(Rfm69HcwDevice.RegOpModeMode.StandBy,
			bitRate: Rfm69HcwDevice.BitRate.bps4K8,
			frequency: 915000000.0, frequencyDeviation: 0X023d,
			dccFrequency: 0x1,rxBwMant: Rfm69HcwDevice.RxBwMant.RxBwMant20, RxBwExp:0x2,
			preambleSize: 16,
			syncSize: 3,
			syncValues: syncValues,
			packetFormat: Rfm69HcwDevice.RegPacketConfig1PacketFormat.VariableLength,
			packetCrc:true
		);

	// RegDioMapping1
	rfm69Device.RegisterManager.WriteByte(0x26, 0x01);

	rfm69Device.RegisterDump();

	while (true)
	{
		byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes("hello world " + DateTime.Now.ToLongTimeString());

		rfm69Device.SendMessage(messageBuffer);

		Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

		Task.Delay(5000).Wait();
	}
}

The Rasmitic library modifies a number of the default settings (e.g. RegRxBw register) so I had to reverse engineer the values. I also added SendMessage methods for both addressed and un-addressed messages.

Register dump
Register 0x01 - Value 0X04 - Bits 00000100
Register 0x02 - Value 0X00 - Bits 00000000
Register 0x03 - Value 0X1a - Bits 00011010
…
Register 0x4b - Value 0X00 - Bits 00000000
Register 0x4c - Value 0X00 - Bits 00000000
Register 0x4d - Value 0X00 - Bits 00000000
16:52:38.337 Send-Done
16:52:38.456 RegIrqFlags 00001000
16:52:38.472 Transmit-Done
The thread 0xfe4 has exited with code 0 (0x0).
The thread 0x100 has exited with code 0 (0x0).
16:52:43.391 Send-Done
16:52:43.465 RegIrqFlags 00001000
16:52:43.480 Transmit-Done
The thread 0xb94 has exited with code 0 (0x0).
16:52:48.475 Send-Done
16:52:48.550 RegIrqFlags 00001000
16:52:48.563 Transmit-Done
16:52:53.448 RegIrqFlags 01000110
16:52:53 Received 13 byte message Hello world:0
The thread 0x2b4 has exited with code 0 (0x0).
16:52:53.559 Send-Done
16:52:53.633 RegIrqFlags 00001000
16:52:53.648 Transmit-Done
16:52:54.577 RegIrqFlags 01000110
16:52:54 Received 13 byte message Hello world:1
16:52:55.706 RegIrqFlags 01000110
16:52:55 Received 13 byte message Hello world:2
16:52:56.836 RegIrqFlags 01000110
16:52:56 Received 13 byte message Hello world:3
16:52:57.965 RegIrqFlags 01000110
16:52:57 Received 13 byte message Hello world:4
The thread 0x354 has exited with code 0 (0x0).
16:52:58.634 Send-Done
16:52:58.709 RegIrqFlags 00001000
16:52:58.724 Transmit-Done
16:52:59.095 RegIrqFlags 01000110
16:52:59 Received 13 byte message Hello world:5
The program '[3736] backgroundTaskHost.exe' has exited with code -1 

The Arduino code works though I need modify it so I can do more testing of the initialise method parameter options.

16:41:03.619 -> RX start
16:41:03.619 -> 0x0: 0x0
16:41:03.654 -> 0x1: 0x10
16:41:03.654 -> 0x2: 0x0
…
16:41:04.310 -> 0x3B: 0x0
16:41:04.310 -> 0x3C: 0x1
16:41:04.344 -> 0x3D: 0x0
16:41:07.228 -> MessageIn:hello world 4:41:07 PM
16:41:12.322 -> MessageIn:hello world 4:41:12 PM
16:41:17.395 -> MessageIn:hello world 4:41:17 PM
16:41:22.448 -> MessageIn:hello world 4:41:22 PM
16:41:27.533 -> MessageIn:hello world 4:41:27 PM
16:41:32.609 -> MessageIn:hello world 4:41:32 PM
16:41:37.673 -> MessageIn:hello world 4:41:37 PM

The Initialise method has a large number of parameters but as most of these have a reasonable default I’m not to concerned.

public void Initialise(RegOpModeMode modeAfterInitialise,
			BitRate bitRate = BitRateDefault,
			ushort frequencyDeviation = frequencyDeviationDefault,
			double frequency = FrequencyDefault,
			ListenModeIdleResolution listenModeIdleResolution = ListenModeIdleResolutionDefault, ListenModeRXTime listenModeRXTime = ListenModeRXTimeDefault, ListenModeCrieria listenModeCrieria = ListenModeCrieriaDefault, ListenModeEnd listenModeEnd = ListenModeEndDefault,
			byte listenCoefficientIdle = ListenCoefficientIdleDefault,
			byte listenCoefficientReceive = ListenCoefficientReceiveDefault,
			bool pa0On = pa0OnDefault, bool pa1On = pa1OnDefaut, bool pa2On = pa2OnDefault, byte outputpower = OutputpowerDefault,
			PaRamp paRamp = PaRampDefault,
			bool ocpOn = OcpOnDefault, byte ocpTrim = OcpTrimDefault,
			LnaZin lnaZin = LnaZinDefault, LnaCurrentGain lnaCurrentGain = LnaCurrentGainDefault, LnaGainSelect lnaGainSelect = LnaGainSelectDefault,
			byte dccFrequency = DccFrequencyDefault, RxBwMant rxBwMant = RxBwMantDefault, byte RxBwExp = RxBwExpDefault,
			byte dccFreqAfc = DccFreqAfcDefault, byte rxBwMantAfc = RxBwMantAfcDefault, byte bxBwExpAfc = RxBwExpAfcDefault,
			ushort preambleSize = PreambleSizeDefault,
			bool syncOn = SyncOnDefault, SyncFifoFileCondition syncFifoFileCondition = SyncFifoFileConditionDefault, byte syncSize = SyncSizeDefault, byte syncTolerance = SyncToleranceDefault, byte[] syncValues = null,
			RegPacketConfig1PacketFormat packetFormat = RegPacketConfig1PacketFormat.FixedLength,
			RegPacketConfig1DcFree packetDcFree = RegPacketConfig1DcFreeDefault,
			bool packetCrc = PacketCrcOnDefault,
			bool packetCrcAutoClearOff = PacketCrcAutoClearOffDefault,
			RegPacketConfig1CrcAddressFiltering packetAddressFiltering = PacketAddressFilteringDefault,
			byte payloadLength = PayloadLengthDefault,
			byte addressNode = NodeAddressDefault, byte addressbroadcast = BroadcastAddressDefault
			)
		{
			RegOpModeModeCurrent = modeAfterInitialise;
			PacketFormat = packetFormat;

			// Strobe Reset pin briefly to factory reset SX1231 chip
			ResetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			ResetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Put the device into sleep mode so registers can be changed
			SetMode(RegOpModeMode.Sleep);

Most of the initialise method follows a similar pattern, checking parameters associated with a Register and only setting it if the cvalues are not all the default

// Configure RF Carrier frequency RegFrMsb, RegFrMid, RegFrLsb
if (frequency != FrequencyDefault)
{
	byte[] bytes = BitConverter.GetBytes((long)(frequency / RH_RFM69HCW_FSTEP));
	RegisterManager.WriteByte((byte)Registers.RegFrfMsb, bytes[2]);
	RegisterManager.WriteByte((byte)Registers.RegFrfMid, bytes[1]);
	RegisterManager.WriteByte((byte)Registers.RegFrfLsb, bytes[0]);
}

Some registers are a bit more complex to configure e.g. RegSyncConfig

// RegSyncConfig
if ((syncOn != SyncOnDefault) ||
	 (syncFifoFileCondition != SyncFifoFileConditionDefault) ||
	 (syncSize != SyncSizeDefault) ||
	 (syncTolerance != SyncToleranceDefault))
{
	byte regSyncConfigValue= 0b00000000;

	if (syncOn)
	{
		regSyncConfigValue |= 0b10000000;
	}
	
	regSyncConfigValue |= (byte)syncFifoFileCondition;

	regSyncConfigValue |= (byte)((syncSize - 1) << 3);
	regSyncConfigValue |= (byte)syncTolerance;
	RegisterManager.WriteByte((byte)Registers.RegSyncConfig, regSyncConfigValue);
}

I have just got to finish the code for RegFifoThresh, RegPacketConfig2 and the RegAesKey1-16 registers.

Other libraries for the RRFM69 support changing configuration while the application is running which significantly increases the complexity and number of test cases. My initial version will only support configuration on start-up.

RFM69 hat library Part11

RegisterManager Refactor

I had been meaning to refactor the code for accessing the registers of the RFM69CW/RFM69HCW module (based on the Semtech SX1231/SX1231H) registers for a while.

Adafruit RFM69 Radio Bonnet

There is now a lot less code in the startup.cs file and the code for configuring the RFM69 is more obvious

/*
    Copyright ® 2019 July devMobile Software, All Rights Reserved

	 MIT License

	 Permission is hereby granted, free of charge, to any person obtaining a copy
	 of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
	 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all
	 copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
	 SOFTWARE

 */
namespace devMobile.IoT.Rfm69Hcw.RefactorRegisterManager
{
	using System;
	using System.Diagnostics;
	using System.Text;
	using System.Threading.Tasks;
	using Windows.ApplicationModel.Background;
	using Windows.Devices.Gpio;

	sealed class Rfm69HcwDevice
	{
		private GpioPin InterruptGpioPin = null;
		public RegisterManager RegisterManager = null; // Future refactor this will be made private

		public Rfm69HcwDevice(ChipSelectPin chipSelectPin, int resetPin, int interruptPin)
		{
			RegisterManager = new RegisterManager(chipSelectPin);

			// Factory reset pin configuration
			GpioController gpioController = GpioController.GetDefault();
			GpioPin resetGpioPin = gpioController.OpenPin(resetPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Output);
			resetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			resetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Interrupt pin for RX message & TX done notification 
			InterruptGpioPin = gpioController.OpenPin(interruptPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Input);

			InterruptGpioPin.ValueChanged += InterruptGpioPin_ValueChanged;
		}

		private void InterruptGpioPin_ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs args)
		{
			if (args.Edge != GpioPinEdge.RisingEdge)
			{
				return;
			}

			byte irqFlags = RegisterManager.ReadByte(0x28); // RegIrqFlags2
			Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags {1}", DateTime.Now, Convert.ToString((byte)irqFlags, 2).PadLeft(8, '0'));
			if ((irqFlags & 0b00000100) == 0b00000100)  // PayLoadReady set
			{
				// Read the length of the buffer
				byte numberOfBytes = RegisterManager.ReadByte(0x0);

				// Allocate buffer for message
				byte[] messageBytes = new byte[numberOfBytes];

				for (int i = 0; i < numberOfBytes; i++)
				{
					messageBytes[i] = RegisterManager.ReadByte(0x00); // RegFifo
				}

				string messageText = UTF8Encoding.UTF8.GetString(messageBytes);
				Debug.WriteLine("{0:HH:mm:ss} Received {1} byte message {2}", DateTime.Now, messageBytes.Length, messageText);
			}

			if ((irqFlags & 0b00001000) == 0b00001000)  // PacketSent set
			{
				RegisterManager.WriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode
				Debug.WriteLine("{0:HH:mm:ss.fff} Transmit-Done", DateTime.Now);
			}
		}

		public void RegisterDump()
		{
			RegisterManager.Dump(0x0, 0x40);
		}
	}
	

	public sealed class StartupTask : IBackgroundTask
	{
		private const int ResetPin = 25;
		private const int InterruptPin = 22;
		private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectPin.CS1, ResetPin, InterruptPin);

		const double RH_RF6M9HCW_FXOSC = 32000000.0;
		const double RH_RFM69HCW_FSTEP = RH_RF6M9HCW_FXOSC / 524288.0;

		public void Run(IBackgroundTaskInstance taskInstance)
		{
			//rfm69Device.RegisterDump();

			// regOpMode standby
			rfm69Device.RegisterManager.WriteByte(0x01, 0b00000100);

			// BitRate MSB/LSB
			rfm69Device.RegisterManager.WriteByte(0x03, 0x34);
			rfm69Device.RegisterManager.WriteByte(0x04, 0x00);

			// Frequency deviation
			rfm69Device.RegisterManager.WriteByte(0x05, 0x02);
			rfm69Device.RegisterManager.WriteByte(0x06, 0x3d);

			// Calculate the frequency accoring to the datasheett
			byte[] bytes = BitConverter.GetBytes((uint)(915000000.0 / RH_RFM69HCW_FSTEP));
			Debug.WriteLine("Byte Hex 0x{0:x2} 0x{1:x2} 0x{2:x2} 0x{3:x2}", bytes[0], bytes[1], bytes[2], bytes[3]);
			rfm69Device.RegisterManager.WriteByte(0x07, bytes[2]);
			rfm69Device.RegisterManager.WriteByte(0x08, bytes[1]);
			rfm69Device.RegisterManager.WriteByte(0x09, bytes[0]);

			// RegRxBW
			rfm69Device.RegisterManager.WriteByte(0x19, 0x2a);

			// RegDioMapping1
			rfm69Device.RegisterManager.WriteByte(0x26, 0x01);

			// Setup preamble length to 16 (default is 3) RegPreambleMsb RegPreambleLsb
			rfm69Device.RegisterManager.WriteByte(0x2C, 0x0);
			rfm69Device.RegisterManager.WriteByte(0x2D, 0x10);

			// RegSyncConfig Set the Sync length and byte values SyncOn + 3 custom sync bytes
			rfm69Device.RegisterManager.WriteByte(0x2e, 0x90);

			// RegSyncValues1 thru RegSyncValues3
			rfm69Device.RegisterManager.WriteByte(0x2f, 0xAA);
			rfm69Device.RegisterManager.WriteByte(0x30, 0x2D);
			rfm69Device.RegisterManager.WriteByte(0x31, 0xD4);

			// RegPacketConfig1 Variable length with CRC on
			rfm69Device.RegisterManager.WriteByte(0x37, 0x90);

			rfm69Device.RegisterDump();

			while (true)
			{
				// Standby mode while loading message into FIFO
				rfm69Device.RegisterManager.WriteByte(0x01, 0b00000100);

				byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes("hello world " + DateTime.Now.ToLongTimeString());
				rfm69Device.RegisterManager.WriteByte(0x0, (byte)messageBuffer.Length);
				rfm69Device.RegisterManager.Write(0x0, messageBuffer);

				// Transmit mode once FIFO loaded
				rfm69Device.RegisterManager.WriteByte(0x01, 0b00001100);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

				Task.Delay(5000).Wait();
			}
		}
	}
}

I’ll modify the constructor reset pin support to see if I can get the Seegel Systeme hat working.

Register dump
Register 0x00 - Value 0X00 - Bits 00000000
Register 0x01 - Value 0X04 - Bits 00000100
Register 0x02 - Value 0X00 - Bits 00000000
Register 0x03 - Value 0X34 - Bits 00110100
…
Register 0x3e - Value 0X00 - Bits 00000000
Register 0x3f - Value 0X00 - Bits 00000000
Register 0x40 - Value 0X00 - Bits 00000000
19:58:52.828 Send-Done
19:58:53.022 RegIrqFlags 00001000
19:58:53.036 Transmit-Done
19:58:54.188 RegIrqFlags 01000110
19:58:54 Received 14 byte message Hello world:1
The thread 0xa10 has exited with code 0 (0x0).
The thread 0xf90 has exited with code 0 (0x0).
19:58:57.652 RegIrqFlags 01000110
19:58:57 Received 14 byte message Hello world:2
19:58:57.892 Send-Done
19:58:58.039 RegIrqFlags 00001000
19:58:58.053 Transmit-Done
19:59:01.115 RegIrqFlags 01000110
19:59:01 Received 14 byte message Hello world:3
19:59:02.936 Send-Done
19:59:03.083 RegIrqFlags 00001000
19:59:03.096 Transmit-Done
19:59:04.577 RegIrqFlags 01000110
19:59:04 Received 14 byte message Hello world:4
The thread 0xa5c has exited with code 0 (0x0).
19:59:08.001 Send-Done
19:59:08.122 RegIrqFlags 01001000
19:59:08.139 Transmit-Done
19:59:11.504 RegIrqFlags 01000110
19:59:11 Received 14 byte message Hello world:6
The thread 0xb18 has exited with code 0 (0x0).
19:59:13.079 Send-Done
19:59:13.226 RegIrqFlags 00001000
19:59:13.240 Transmit-Done
19:59:14.966 RegIrqFlags 01000110
19:59:14 Received 14 byte message Hello world:7

Based how my rate of progress improved when I did this on the RFM9X library I really should have done this much earlier.

RFM69 hat library Part10

Encryption: Rasmatic/RFM69-Arduino-Library

The RFM69CW/RFM69HCW modules (based on the Semtech SX1231/SX1231H) have built in support for AES128 encryption. In this test harness I’m exploring the RFM69 AES128 implementation.

In the Arduino code I found the order of initialisation was critical. Because of the way the Rasmatic library is written the call to vRF69SetAesKey has to be after the vInitialize.

void setup() 
{
  Serial.begin(9600);

  pinMode(SENDER_DETECT_PIN, INPUT_PULLUP);  
  
  radio.Modulation     = FSK;
  radio.COB            = RFM69;
  radio.Frequency      = 915000;
  radio.OutputPower    = 10+18;          //10dBm OutputPower
  radio.PreambleLength = 16;             //16Byte preamble
  radio.FixedPktLength = false;          //packet in message which need to be send
  radio.CrcDisable     = false;          //CRC On
  radio.AesOn          = false;
  radio.SymbolTime     = 416000;         //2.4Kbps
  radio.Devation       = 35;             //35KHz for devation
  radio.BandWidth      = 100;            //100KHz for bandwidth
  radio.SyncLength     = 3;              //
  radio.SyncWord[0]    = 0xAA;
  radio.SyncWord[1]    = 0x2D;
  radio.SyncWord[2]    = 0xD4;

  // Highly secure 16byte fixed length key
  radio.AesKey[0] = 0x0;
  radio.AesKey[1] = 0x1;
  radio.AesKey[2] = 0x2;
  radio.AesKey[3] = 0x3;
  radio.AesKey[4] = 0x4;
  radio.AesKey[5] = 0x5;
  radio.AesKey[6] = 0x6;
  radio.AesKey[7] = 0x7;
  radio.AesKey[8] = 0x8;
  radio.AesKey[9] = 0x9;
  radio.AesKey[10] = 0xA;
  radio.AesKey[11] = 0xB;
  radio.AesKey[12] = 0xC;
  radio.AesKey[13] = 0xD;
  radio.AesKey[14] = 0xE;
  radio.AesKey[15] = 0xF;
  radio.AesOn = true ;

  radio.vInitialize();

  radio.vRF69SetAesKey();

When I first fired up the Arduino client on the Windows 10 IoT Core device I hadn’t configured the AES key but had enabled encryption.

19:21:25 Received 13 byte message =!{��>�_��5
19:21:26.114 RegIrqFlags 01000110
19:21:26 Received 13 byte message ���gǺm,0|��
19:21:26.273 Send-Done
19:21:26.453 RegIrqFlags 00001000
19:21:26.467 Transmit-Done
19:21:27.244 RegIrqFlags 01000110
19:21:27 Received 13 byte message w6�H�Y���#"#
19:21:28.373 RegIrqFlags 01000110
19:21:28 Received 13 byte message c�u�$mԙ���M{
...
Restart Arduino client
...
19:21:34.836 RegIrqFlags 01000110
19:21:34 Received 13 byte message ���gǺm,0|��
19:21:35.965 RegIrqFlags 01000110
19:21:35 Received 13 byte message w6�H�Y���#"#
19:21:36.429 Send-Done
19:21:36.610 RegIrqFlags 00001000
19:21:36.624 Transmit-Done
19:21:37.095 RegIrqFlags 01000110
19:21:37 Received 13 byte message c�u�$mԙ���M{
The program '[1560] backgroundTaskHost.exe' has exited with code -1 (0xffffffff).

When I restarted the Arduino client I got the same sequences of characters in the messages so it looks like the RFM69 encryption is most probably using electronic code book (ECB) rather than a mode with a changing initialisation vector(IV) e.g. cypher block chaining(CBC). (which wasn’t a surprise)

After modifying the Windows 10 IoT Core application to receive and transmit encrypted payloads

/*
    Copyright ® 2019 July devMobile Software, All Rights Reserved

	 MIT License

	 Permission is hereby granted, free of charge, to any person obtaining a copy
	 of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
	 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all
	 copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
	 SOFTWARE

 */
namespace devMobile.IoT.Rfm69Hcw.Encryption
{
	using System;
	using System.Diagnostics;
	using System.Runtime.InteropServices.WindowsRuntime;
	using System.Text;
	using System.Threading.Tasks;
	using Windows.ApplicationModel.Background;
	using Windows.Devices.Gpio;
	using Windows.Devices.Spi;

	public sealed class Rfm69HcwDevice
	{
		private SpiDevice Rfm69Hcw;
		private GpioPin InterruptGpioPin = null;
		private const byte RegisterAddressReadMask = 0X7f;
		private const byte RegisterAddressWriteMask = 0x80;

		public Rfm69HcwDevice(int chipSelectPin, int resetPin, int interruptPin)
		{
			SpiController spiController = SpiController.GetDefaultAsync().AsTask().GetAwaiter().GetResult();
			var settings = new SpiConnectionSettings(chipSelectPin)
			{
				ClockFrequency = 500000,
				Mode = SpiMode.Mode0,
			};

			// Factory reset pin configuration
			GpioController gpioController = GpioController.GetDefault();
			GpioPin resetGpioPin = gpioController.OpenPin(resetPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Output);
			resetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			resetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Interrupt pin for RX message & TX done notification 
			InterruptGpioPin = gpioController.OpenPin(interruptPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Input);

			InterruptGpioPin.ValueChanged += InterruptGpioPin_ValueChanged;

			Rfm69Hcw = spiController.GetDevice(settings);
		}

		private void InterruptGpioPin_ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs args)
		{
			if (args.Edge != GpioPinEdge.RisingEdge)
			{
				return;
			}

			byte irqFlags = this.RegisterReadByte(0x28); // RegIrqFlags2
			Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags {1}", DateTime.Now, Convert.ToString((byte)irqFlags, 2).PadLeft(8, '0'));
			if ((irqFlags & 0b00000100) == 0b00000100)  // PayLoadReady set
			{
				// Read the length of the buffer
				byte numberOfBytes = this.RegisterReadByte(0x0);

				// Allocate buffer for message
				byte[] messageBytes = new byte[numberOfBytes];

				for (int i = 0; i < numberOfBytes; i++)
				{
					messageBytes[i] = this.RegisterReadByte(0x00); // RegFifo
				}

				string messageText = UTF8Encoding.UTF8.GetString(messageBytes);
				Debug.WriteLine("{0:HH:mm:ss} Received {1} byte message {2}", DateTime.Now, messageBytes.Length, messageText);
			}

			if ((irqFlags & 0b00001000) == 0b00001000)  // PacketSent set
			{
				this.RegisterWriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode
				Debug.WriteLine("{0:HH:mm:ss.fff} Transmit-Done", DateTime.Now);
			}
		}

		public Byte RegisterReadByte(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[1];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer[0];
		}

		public byte[] RegisterRead(byte address, int length)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[length];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer;
		}

		public void RegisterWriteByte(byte address, byte value)
		{
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, value };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterWrite(byte address, [ReadOnlyArray()] byte[] bytes)
		{
			byte[] writeBuffer = new byte[1 + bytes.Length];
			Debug.Assert(Rfm69Hcw != null);

			Array.Copy(bytes, 0, writeBuffer, 1, bytes.Length);
			writeBuffer[0] = address |= RegisterAddressWriteMask;

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterDump()
		{
			Debug.WriteLine("Register dump");
			for (byte registerIndex = 0; registerIndex <= 0x3D; registerIndex++)
			{
				byte registerValue = this.RegisterReadByte(registerIndex);

				Debug.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
			}
		}
	}


	public sealed class StartupTask : IBackgroundTask
	{
		private const int ChipSelectLine = 1;
		private const int ResetPin = 25;
		private const int InterruptPin = 22;
		private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectLine, ResetPin, InterruptPin);

		const double RH_RF6M9HCW_FXOSC = 32000000.0;
		const double RH_RFM69HCW_FSTEP = RH_RF6M9HCW_FXOSC / 524288.0;

		public void Run(IBackgroundTaskInstance taskInstance)
		{
			//rfm69Device.RegisterDump();

			// regOpMode standby
			rfm69Device.RegisterWriteByte(0x01, 0b00000100);

			// BitRate MSB/LSB
			rfm69Device.RegisterWriteByte(0x03, 0x34);
			rfm69Device.RegisterWriteByte(0x04, 0x00);

			// Frequency deviation
			rfm69Device.RegisterWriteByte(0x05, 0x02);
			rfm69Device.RegisterWriteByte(0x06, 0x3d);

			// Calculate the frequency accoring to the datasheett
			byte[] bytes = BitConverter.GetBytes((uint)(915000000.0 / RH_RFM69HCW_FSTEP));
			Debug.WriteLine("Byte Hex 0x{0:x2} 0x{1:x2} 0x{2:x2} 0x{3:x2}", bytes[0], bytes[1], bytes[2], bytes[3]);
			rfm69Device.RegisterWriteByte(0x07, bytes[2]);
			rfm69Device.RegisterWriteByte(0x08, bytes[1]);
			rfm69Device.RegisterWriteByte(0x09, bytes[0]);

			// RegRxBW
			rfm69Device.RegisterWriteByte(0x19, 0x2a);

			// RegDioMapping1
			rfm69Device.RegisterWriteByte(0x26, 0x01);

			// Setup preamble length to 16 (default is 3) RegPreambleMsb RegPreambleLsb
			rfm69Device.RegisterWriteByte(0x2C, 0x0);
			rfm69Device.RegisterWriteByte(0x2D, 0x10);

			// RegSyncConfig Set the Sync length and byte values SyncOn + 3 custom sync bytes
			rfm69Device.RegisterWriteByte(0x2e, 0x90);

			// RegSyncValues1 thru RegSyncValues3
			rfm69Device.RegisterWriteByte(0x2f, 0xAA);
			rfm69Device.RegisterWriteByte(0x30, 0x2D);
			rfm69Device.RegisterWriteByte(0x31, 0xD4);

			// RegPacketConfig1 Variable length with CRC on
			rfm69Device.RegisterWriteByte(0x37, 0x90);

			// Set the AES key and turn on AES RegPacketConfig2
			rfm69Device.RegisterWriteByte(0x3D, 0x03);
	
			rfm69Device.RegisterWriteByte(0x3E, 0x00);
			rfm69Device.RegisterWriteByte(0x3F, 0x01);
			rfm69Device.RegisterWriteByte(0x40, 0x02);
			rfm69Device.RegisterWriteByte(0x41, 0x03);
			rfm69Device.RegisterWriteByte(0x42, 0x04);
			rfm69Device.RegisterWriteByte(0x43, 0x05);
			rfm69Device.RegisterWriteByte(0x44, 0x06);
			rfm69Device.RegisterWriteByte(0x45, 0x07);
			rfm69Device.RegisterWriteByte(0x46, 0x08);
			rfm69Device.RegisterWriteByte(0x47, 0x09);
			rfm69Device.RegisterWriteByte(0x48, 0x0A);
			rfm69Device.RegisterWriteByte(0x49, 0x0B);
			rfm69Device.RegisterWriteByte(0x4A, 0x0C);
			rfm69Device.RegisterWriteByte(0x4B, 0x0D);
			rfm69Device.RegisterWriteByte(0x4C, 0x0E);
			rfm69Device.RegisterWriteByte(0x4D, 0x0F);
			
/*
			// Clear out the AES key
			rfm69Device.RegisterWriteByte(0x3E, 0x0);
			rfm69Device.RegisterWriteByte(0x3F, 0x0);
			rfm69Device.RegisterWriteByte(0x40, 0x0);
			rfm69Device.RegisterWriteByte(0x41, 0x0);
			rfm69Device.RegisterWriteByte(0x42, 0x0);
			rfm69Device.RegisterWriteByte(0x43, 0x0);
			rfm69Device.RegisterWriteByte(0x44, 0x0);
			rfm69Device.RegisterWriteByte(0x45, 0x0);
			rfm69Device.RegisterWriteByte(0x46, 0x0);
			rfm69Device.RegisterWriteByte(0x47, 0x0);
			rfm69Device.RegisterWriteByte(0x48, 0x0);
			rfm69Device.RegisterWriteByte(0x49, 0x0);
			rfm69Device.RegisterWriteByte(0x4A, 0x0);
			rfm69Device.RegisterWriteByte(0x4B, 0x0);
			rfm69Device.RegisterWriteByte(0x4C, 0x0);
			rfm69Device.RegisterWriteByte(0x4D, 0x0);
*/			

			rfm69Device.RegisterDump();

			while (true)
			{
				// Standby mode while loading message into FIFO
				rfm69Device.RegisterWriteByte(0x01, 0b00000100);

				byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes("hello world " + DateTime.Now.ToLongTimeString());
				rfm69Device.RegisterWriteByte(0x0, (byte)messageBuffer.Length);
				rfm69Device.RegisterWrite(0x0, messageBuffer);

				// Transmit mode once FIFO loaded
				rfm69Device.RegisterWriteByte(0x01, 0b00001100);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

				Task.Delay(5000).Wait();
			}
		}
	}
}

I could see inbound messages from the transmit Arduino and Windows 10 device interleaved on the receive Arduino.

21:06:12.735 -> RX start
21:06:12.735 -> 0x0: 0x0
21:06:12.769 -> 0x1: 0x10
21:06:12.769 -> 0x2: 0x0
…
21:06:13.453 -> 0x3B: 0x0
21:06:13.453 -> 0x3C: 0x1
21:06:13.487 -> 0x3D: 0x1
21:06:15.218 -> MessageIn:hello world 9:06:15 PM
21:06:20.317 -> MessageIn:hello world 9:06:20 PM
21:06:24.559 -> MessageIn:Hello world:0
21:06:25.384 -> MessageIn:hello world 9:06:25 PM
21:06:28.009 -> MessageIn:Hello world:1
21:06:30.454 -> MessageIn:hello world 9:06:30 PM
21:06:31.455 -> MessageIn:Hello world:2
21:06:34.939 -> MessageIn:Hello world:3
21:06:35.596 -> MessageIn:hello world 9:06:35 PM
21:06:38.389 -> MessageIn:Hello world:4
21:06:40.666 -> MessageIn:hello world 9:06:40 PM
21:06:41.838 -> MessageIn:Hello world:5
21:06:45.316 -> MessageIn:Hello world:6
21:06:45.731 -> MessageIn:hello world 9:06:45 PM
21:06:48.761 -> MessageIn:Hello world:7
21:06:50.799 -> MessageIn:hello world 9:06:50 PM
21:06:52.214 -> MessageIn:Hello world:8

The next step will be merging and refactoring the test harness to extract the code for accessing the RFM69 registers into a separate class, then defining enumerations and constants for all the RFM69 settings.

RFM69 hat library Part9

Addressing: Rasmatic/RFM69-Arduino-Library

The RFM69CW/RFM69HCW modules (based on the Semtech SX1231/SX1231H) have built in support for addressing individual devices (register RegNodeAdrs 0x39) or broadcasting to groups of devices (register RegBroadcastAdrs 0x3A). In this test harness I’m exploring the RFM69 device support for these two different addressing modes which is configured in RegPacketConfig1 0x37.

RFM69 Address filtering options

The fixed length packet format contains the following fields

  • Preamble (1010…)
  • Sync word (Network ID)
  • Optional Address byte (Node ID)
  • Message data
  • Optional 2-bytes CRC checksum
Fixed length packet format

The variable length packet format contains the following fields

  • Preamble (1010…)
  • Sync word (Network ID)
  • Length byte
  • Optional Address byte (Node ID)
  • Message data
  • Optional 2-bytes CRC checksum
Variable length packet format

My first attempt at addressing was by modifying the payload (the extra space at the start of the payload was replaced by the target device address)

void loop() 
{
  char messageIn[128] = {""};
  char messageOut[32]= {" Hello world:"};

  if (digitalRead(SENDER_DETECT_PIN) == LOW)
  {
    if(radio.bGetMessage(messageIn)!=0)
    { 
      Serial.print("MessageIn:");
      Serial.println(messageIn);
    }    
  }
  else
  {  
    Serial.print("MessageOut:") ;
    itoa(counter,&messageOut[strlen(messageOut)],10);
    Serial.print("(");
    Serial.print(messageOut);
    Serial.println(")");
    Serial.print("Length:") ;
    Serial.println(strlen(messageOut));

    messageOut[0]=0x99;
    if (!radio.bSendMessage(messageOut, strlen(messageOut)))
    {
      Serial.println("bSendMessage failed");
    }
    counter++;
    delay(1000);
  }

The rasmatic/RFM69-Arduino-Library doesn’t natively support sending addressed payloads so I had to add a method to test my Windows 10 IoT Core client.

Initially it truncated messages because I neglected to include the byte with the length of the message in the length of the message. I also had to extend the timeout for sending a message a bit more than I expected for one extra byte.

bool RMRFM69::bSendMessage(byte address, byte msg[], byte length)
{
byte tmp;
 uint32_t overtime;
 word bittime;

 switch(COB)
	{
	case RFM65:									//only for Rx
	case RFM65C:
		return(false);
	case RFM69H:
	case RFM69HC:
 		vSpiWrite(((word)RegTestPa1<<8)+0x5D);		//for HighPower
	 	vSpiWrite(((word)RegTestPa2<<8)+0x7C);
		break;
	default:
	case RFM69:
	case RFM69C:
	 	vSpiWrite(((word)RegTestPa1<<8)+0x55);		//for NormalMode or RxMode
 		vSpiWrite(((word)RegTestPa2<<8)+0x70);
		break;
	}
	
 vSpiWrite(((word)RegDioMapping1<<8)+0x04);	//DIO0 PacketSend  / DIO1 FiflLevel / DIO2 Data /DIO3 FifoFull
 
 if(!FixedPktLength)
 	vSpiWrite(((word)RegFifo<<8)+length+1);
 vSpiWrite(((word)RegFifo<<8)+address);
 
 vSpiBurstWrite(RegFifo, msg, length);
 
 tmp = bSpiRead(RegOpMode);
 tmp&= MODE_MASK;
 tmp |= RADIO_TX;
 vSpiWrite(((word)RegOpMode<<8)+tmp);
  
 //�ȴ��������
 bittime  = SymbolTime/1000;		//unit: us
 overtime = SyncLength+PreambleLength+length+1;
 if(!FixedPktLength)				//SyncWord & PktLength & 2ByteCRC
    overtime += 1;
 if(!CrcDisable)
 	overtime += 2;
 overtime<<=3;					//8bit == 1byte
 overtime*= bittime;
 overtime/= 1000;				//unit: ms
 if(overtime==0) 
 	overtime = 1;
 overtime += (overtime>>3);		//add 12.5% for ensure
 delay(overtime);			//
 for(tmp=0;tmp<1000;tmp++)		//about 50ms for overtime
 	{
 	if(digitalRead(_dio0Pin))
 		break; 	
 	delayMicroseconds(500);
 	}
 vGoStandby();	
 if(tmp>=200)
 	return(false);
 else
 	return(true);
}

The Windows 10 IoT Core library interrupt handler needed some modification to display message only when the address matched and I also displayed the targeted address so I could check that device and broadcast addressing was working

/*
    Copyright ® 2019 July devMobile Software, All Rights Reserved

	 MIT License

	 Permission is hereby granted, free of charge, to any person obtaining a copy
	 of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
	 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all
	 copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
	 SOFTWARE

 */
namespace devMobile.IoT.Rfm69Hcw.Addressing
{
	using System;
	using System.Diagnostics;
	using System.Runtime.InteropServices.WindowsRuntime;
	using System.Text;
	using System.Threading.Tasks;
	using Windows.ApplicationModel.Background;
	using Windows.Devices.Gpio;
	using Windows.Devices.Spi;

	public sealed class Rfm69HcwDevice
	{
		private SpiDevice Rfm69Hcw;
		private GpioPin InterruptGpioPin = null;
		private const byte RegisterAddressReadMask = 0X7f;
		private const byte RegisterAddressWriteMask = 0x80;

		public Rfm69HcwDevice(int chipSelectPin, int resetPin, int interruptPin)
		{
			SpiController spiController = SpiController.GetDefaultAsync().AsTask().GetAwaiter().GetResult();
			var settings = new SpiConnectionSettings(chipSelectPin)
			{
				ClockFrequency = 500000,
				Mode = SpiMode.Mode0,
			};

			// Factory reset pin configuration
			GpioController gpioController = GpioController.GetDefault();
			GpioPin resetGpioPin = gpioController.OpenPin(resetPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Output);
			resetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			resetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Interrupt pin for RX message & TX done notification 
			InterruptGpioPin = gpioController.OpenPin(interruptPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Input);

			InterruptGpioPin.ValueChanged += InterruptGpioPin_ValueChanged;

			Rfm69Hcw = spiController.GetDevice(settings);
		}

		private void InterruptGpioPin_ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs args)
		{
			if (args.Edge != GpioPinEdge.RisingEdge)
			{
				return;
			}

			byte irqFlags2 = this.RegisterReadByte(0x28); // RegIrqFlags2
			Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags2 {1}", DateTime.Now, Convert.ToString((byte)irqFlags2, 2).PadLeft(8, '0'));
			if ((irqFlags2 & 0b00000100) == 0b00000100)  // PayLoadReady set
			{
				byte irqFlags1 = this.RegisterReadByte(0x27); // RegIrqFlags1

				// Read the length of the buffer
				byte numberOfBytes = this.RegisterReadByte(0x0);

				Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags1 {1}", DateTime.Now, Convert.ToString((byte)irqFlags1, 2).PadLeft(8, '0'));
				if ((irqFlags1 & 0b00000001) == 0b00000001)  // SyncAddressMatch
				{
					byte address = this.RegisterReadByte(0x0);
					Debug.WriteLine("{0:HH:mm:ss.fff} Address 0X{1:X2} b{2}", DateTime.Now, address, Convert.ToString((byte)address, 2).PadLeft(8, '0'));
					numberOfBytes--;
				}

				// Allocate buffer for message
				byte[] messageBytes = new byte[numberOfBytes];

				for (int i = 0; i < numberOfBytes; i++)
				{
					messageBytes[i] = this.RegisterReadByte(0x00); // RegFifo
				}

				string messageText = UTF8Encoding.UTF8.GetString(messageBytes);
				Debug.WriteLine("{0:HH:mm:ss} Received:{1} byte message({2})", DateTime.Now, messageBytes.Length, messageText);
			}

			if ((irqFlags2 & 0b00001000) == 0b00001000)  // PacketSent set
			{
				this.RegisterWriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode
				Debug.WriteLine("{0:HH:mm:ss.fff} Transmit-Done", DateTime.Now);
			}
		}

		public Byte RegisterReadByte(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[1];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer[0];
		}

		public byte[] RegisterRead(byte address, int length)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[length];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer;
		}

		public void RegisterWriteByte(byte address, byte value)
		{
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, value };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterWrite(byte address, [ReadOnlyArray()] byte[] bytes)
		{
			byte[] writeBuffer = new byte[1 + bytes.Length];
			Debug.Assert(Rfm69Hcw != null);

			Array.Copy(bytes, 0, writeBuffer, 1, bytes.Length);
			writeBuffer[0] = address |= RegisterAddressWriteMask;

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterDump()
		{
			Debug.WriteLine("Register dump");
			for (byte registerIndex = 0; registerIndex <= 0x3D; registerIndex++)
			{
				byte registerValue = this.RegisterReadByte(registerIndex);

				Debug.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
			}
		}
	}

	public sealed class StartupTask : IBackgroundTask
	{
		private const int ChipSelectLine = 1;
		private const int ResetPin = 25;
		private const int InterruptPin = 22;
		private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectLine, ResetPin, InterruptPin);

		const double RH_RF6M9HCW_FXOSC = 32000000.0;
		const double RH_RFM69HCW_FSTEP = RH_RF6M9HCW_FXOSC / 524288.0;

		public void Run(IBackgroundTaskInstance taskInstance)
		{
			//rfm69Device.RegisterDump();

			// regOpMode standby
			rfm69Device.RegisterWriteByte(0x01, 0b00000100);

			// BitRate MSB/LSB
			rfm69Device.RegisterWriteByte(0x03, 0x34);
			rfm69Device.RegisterWriteByte(0x04, 0x00);

			// Frequency deviation
			rfm69Device.RegisterWriteByte(0x05, 0x02);
			rfm69Device.RegisterWriteByte(0x06, 0x3d);

			// Calculate the frequency accoring to the datasheett
			byte[] bytes = BitConverter.GetBytes((uint)(915000000.0 / RH_RFM69HCW_FSTEP));
			Debug.WriteLine("Byte Hex 0x{0:x2} 0x{1:x2} 0x{2:x2} 0x{3:x2}", bytes[0], bytes[1], bytes[2], bytes[3]);
			rfm69Device.RegisterWriteByte(0x07, bytes[2]);
			rfm69Device.RegisterWriteByte(0x08, bytes[1]);
			rfm69Device.RegisterWriteByte(0x09, bytes[0]);

			// RegRxBW
			rfm69Device.RegisterWriteByte(0x19, 0x2a);

			// RegDioMapping1
			rfm69Device.RegisterWriteByte(0x26, 0x01);

			// Setup preamble length to 16 (default is 3) RegPreambleMsb RegPreambleLsb
			rfm69Device.RegisterWriteByte(0x2C, 0x0);
			rfm69Device.RegisterWriteByte(0x2D, 0x10);

			// RegSyncConfig Set the Sync length and byte values SyncOn + 3 custom sync bytes
			rfm69Device.RegisterWriteByte(0x2e, 0x90);

			// RegSyncValues1 thru RegSyncValues3
			rfm69Device.RegisterWriteByte(0x2f, 0xAA);
			rfm69Device.RegisterWriteByte(0x30, 0x2D);
			rfm69Device.RegisterWriteByte(0x31, 0xD4);

			// RegPacketConfig1 Variable length with CRC on
			//rfm69Device.RegisterWriteByte(0x37, 0x90);

			// RegPacketConfig1 Variable length with CRC on + NodeAddress
			//rfm69Device.RegisterWriteByte(0x37, 0x92);

			// RegPacketConfig1 Variable length with CRC on + NodeAddress & Broadcast Address
			rfm69Device.RegisterWriteByte(0x37, 0x94);

			// RegNodeAdrs 
			rfm69Device.RegisterWriteByte(0x39, 0x99);

			// RegBroadcastAdrs
			rfm69Device.RegisterWriteByte(0x3A, 0x66);

			rfm69Device.RegisterDump();

			rfm69Device.RegisterWriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode

			while (true)
			{
				Debug.Write(".");

				Task.Delay(1000).Wait();
			}
		}
	}
}

The debug output window shows the flags and messages

Register dump
Register 0x00 - Value 0X00 - Bits 00000000
Register 0x01 - Value 0X04 - Bits 00000100
Register 0x02 - Value 0X00 - Bits 00000000
…
Register 0x3b - Value 0X00 - Bits 00000000
Register 0x3c - Value 0X0f - Bits 00001111
Register 0x3d - Value 0X02 - Bits 00000010
...........
15:58:16.931 RegIrqFlags2 01100110
15:58:17.096 RegIrqFlags1 11011001
15:58:17.118 Address 0X99 b10011001
15:58:17 Received:14 byte message( Hello world:0)
.15:58:18.009 RegIrqFlags2 01100110
15:58:18.024 RegIrqFlags1 11011001
15:58:18.039 Address 0X99 b10011001
15:58:18 Received:14 byte message( Hello world:1)
.15:58:19.146 RegIrqFlags2 01100110
15:58:19.161 RegIrqFlags1 11011001
15:58:19.176 Address 0X99 b10011001
15:58:19 Received:14 byte message( Hello world:2)
.15:58:20.284 RegIrqFlags2 01100110
15:58:20.299 RegIrqFlags1 11011001
15:58:20.313 Address 0X99 b10011001
15:58:20 Received:14 byte message( Hello world:3)
.15:58:21.421 RegIrqFlags2 01100110
.15:58:21.454 RegIrqFlags1 11011001
15:58:21.469 Address 0X99 b10011001
15:58:21 Received:14 byte message( Hello world:4)
....

The next steps will be getting the RFM69 message encryption going, then building a fully featured library based on the code in each of individual test harnesses.

RFM69 hat library Part8

ReceiveTransmit Interrupt: Rasmatic/RFM69-Arduino-Library

I started by merging the transmit and receive interrupt samples, taking into account the simplex RFM69HCW radio link. I modified the code in the interrupt handler to process receive and transmit interrupts based on bit flags set in RegIrqFlags2.

The receive interrupt handler loads the inbound message (Need to set CRC checking flag) into a buffer for display. The transmit interrupt handler sets RegOpMode to receive mode and enables PayloadReady interrupts as soon as the outbound message had been sent.

/*
    Copyright ® 2019 July devMobile Software, All Rights Reserved

	 MIT License

	 Permission is hereby granted, free of charge, to any person obtaining a copy
	 of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
	 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all
	 copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
	 SOFTWARE

 */
namespace devMobile.IoT.Rfm69Hcw.ReceiveTransmitInterrupt
{
	using System;
	using System.Diagnostics;
	using System.Runtime.InteropServices.WindowsRuntime;
	using System.Text;
	using System.Threading.Tasks;
	using Windows.ApplicationModel.Background;
	using Windows.Devices.Gpio;
	using Windows.Devices.Spi;

	public sealed class Rfm69HcwDevice
	{
		private SpiDevice Rfm69Hcw;
		private GpioPin InterruptGpioPin = null;
		private const byte RegisterAddressReadMask = 0X7f;
		private const byte RegisterAddressWriteMask = 0x80;

		public Rfm69HcwDevice(int chipSelectPin, int resetPin, int interruptPin)
		{
			SpiController spiController = SpiController.GetDefaultAsync().AsTask().GetAwaiter().GetResult();
			var settings = new SpiConnectionSettings(chipSelectPin)
			{
				ClockFrequency = 500000,
				Mode = SpiMode.Mode0,
			};

			// Factory reset pin configuration
			GpioController gpioController = GpioController.GetDefault();
			GpioPin resetGpioPin = gpioController.OpenPin(resetPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Output);
			resetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			resetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Interrupt pin for RX message & TX done notification 
			InterruptGpioPin = gpioController.OpenPin(interruptPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Input);

			InterruptGpioPin.ValueChanged += InterruptGpioPin_ValueChanged;

			Rfm69Hcw = spiController.GetDevice(settings);
		}

		private void InterruptGpioPin_ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs args)
		{
			if (args.Edge != GpioPinEdge.RisingEdge)
			{
				return;
			}

			byte irqFlags = this.RegisterReadByte(0x28); // RegIrqFlags2
			Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags {1}", DateTime.Now, Convert.ToString((byte)irqFlags, 2).PadLeft(8, '0'));
			if ((irqFlags & 0b00000100) == 0b00000100)  // PayLoadReady set
			{
				// Read the length of the buffer
				byte numberOfBytes = this.RegisterReadByte(0x0);

				// Allocate buffer for message
				byte[] messageBytes = new byte[numberOfBytes];

				for (int i = 0; i < numberOfBytes; i++)
				{
					messageBytes[i] = this.RegisterReadByte(0x00); // RegFifo
				}

				string messageText = UTF8Encoding.UTF8.GetString(messageBytes);
				Debug.WriteLine("{0:HH:mm:ss} Received {1} byte message {2}", DateTime.Now, messageBytes.Length, messageText);
			}

			if ((irqFlags & 0b00001000) == 0b00001000)  // PacketSent set
			{
				this.RegisterWriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode
				Debug.WriteLine("{0:HH:mm:ss.fff} Transmit-Done", DateTime.Now);
			}
		}

		public Byte RegisterReadByte(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[1];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer[0];
		}

		public ushort RegisterReadWord(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[2];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return (ushort)(readBuffer[1] + (readBuffer[0] << 8));
		}

		public void RegisterWriteByte(byte address, byte value)
		{
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, value };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterWriteWord(byte address, ushort value)
		{
			byte[] valueBytes = BitConverter.GetBytes(value);
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, valueBytes[0], valueBytes[1] };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterDump()
		{
			Debug.WriteLine("Register dump");
			for (byte registerIndex = 0; registerIndex <= 0x3D; registerIndex++)
			{
				byte registerValue = this.RegisterReadByte(registerIndex);

				Debug.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
			}
		}
	}


	public sealed class StartupTask : IBackgroundTask
	{
		private const int ChipSelectLine = 1;
		private const int ResetPin = 25;
		private const int InterruptPin = 22;
		private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectLine, ResetPin, InterruptPin);

		const double RH_RF6M9HCW_FXOSC = 32000000.0;
		const double RH_RFM69HCW_FSTEP = RH_RF6M9HCW_FXOSC / 524288.0;

		public void Run(IBackgroundTaskInstance taskInstance)
		{
			//rfm69Device.RegisterDump();

			// regOpMode standby
			rfm69Device.RegisterWriteByte(0x01, 0b00000100);

			// BitRate MSB/LSB
			rfm69Device.RegisterWriteByte(0x03, 0x34);
			rfm69Device.RegisterWriteByte(0x04, 0x00);

			// Frequency deviation
			rfm69Device.RegisterWriteByte(0x05, 0x02);
			rfm69Device.RegisterWriteByte(0x06, 0x3d);

			// Calculate the frequency accoring to the datasheett
			byte[] bytes = BitConverter.GetBytes((uint)(915000000.0 / RH_RFM69HCW_FSTEP));
			Debug.WriteLine("Byte Hex 0x{0:x2} 0x{1:x2} 0x{2:x2} 0x{3:x2}", bytes[0], bytes[1], bytes[2], bytes[3]);
			rfm69Device.RegisterWriteByte(0x07, bytes[2]);
			rfm69Device.RegisterWriteByte(0x08, bytes[1]);
			rfm69Device.RegisterWriteByte(0x09, bytes[0]);

			// RegRxBW
			rfm69Device.RegisterWriteByte(0x19, 0x2a);

			// RegDioMapping1
			rfm69Device.RegisterWriteByte(0x26, 0x01);

			// Setup preamble length to 16 (default is 3) RegPreambleMsb RegPreambleLsb
			rfm69Device.RegisterWriteByte(0x2C, 0x0);
			rfm69Device.RegisterWriteByte(0x2D, 0x10);

			// RegSyncConfig Set the Sync length and byte values SyncOn + 3 custom sync bytes
			rfm69Device.RegisterWriteByte(0x2e, 0x90);

			// RegSyncValues1 thru RegSyncValues3
			rfm69Device.RegisterWriteByte(0x2f, 0xAA);
			rfm69Device.RegisterWriteByte(0x30, 0x2D);
			rfm69Device.RegisterWriteByte(0x31, 0xD4);

			// RegPacketConfig1 Variable length with CRC on
			rfm69Device.RegisterWriteByte(0x37, 0x90);

			rfm69Device.RegisterDump();

			while (true)
			{
				// Standby mode while loading message into FIFO
				rfm69Device.RegisterWriteByte(0x01, 0b00000100);

				byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes("hello world " + DateTime.Now.ToLongTimeString());
				rfm69Device.RegisterWriteByte(0x0, (byte)messageBuffer.Length);
				rfm69Device.RegisterWrite(0x0, messageBuffer);

				// Transmit mode once FIFO loaded
				rfm69Device.RegisterWriteByte(0x01, 0b00001100);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

				Task.Delay(5000).Wait();
			}
		}
	}
}

Arduino based transmit and receive test rig

I used the same Arduino devices and code as my receive and transmit samples. After sorting out the timing for enabling receive mode on the Windows 10IoT Core the transmission and receiving of packets was reliable (as long as two devices weren’t transmitting at the same time).

Byte Hex 0x00 0xc0 0xe4 0x00
Register dump
Register 0x00 - Value 0X00 - Bits 00000000
Register 0x01 - Value 0X04 - Bits 00000100
Register 0x02 - Value 0X00 - Bits 00000000
…
Register 0x3b - Value 0X00 - Bits 00000000
Register 0x3c - Value 0X0f - Bits 00001111
Register 0x3d - Value 0X02 - Bits 00000010
20:20:14.952 Send-Done
20:20:15.146 RegIrqFlags 00001000
20:20:15.160 Transmit-Done
20:20:15.298 RegIrqFlags 01000110
20:20:15 Received 14 byte message Hello world:89
20:20:17.429 RegIrqFlags 01000110
20:20:17 Received 14 byte message Hello world:90
The thread 0x1658 has exited with code 0 (0x0).
The thread 0x15cc has exited with code 0 (0x0).
20:20:19.560 RegIrqFlags 01000110
20:20:19 Received 14 byte message Hello world:91
20:20:20.031 Send-Done
20:20:20.178 RegIrqFlags 00001000
20:20:20.194 Transmit-Done

The above trace is from the Windows 10 IoT Core device as it transmits and receives messages.

20:24:36.311 -> RX start
20:24:36.345 -> 0x0: 0x0
20:24:36.345 -> 0x1: 0x10
20:24:36.345 -> 0x2: 0x0
20:24:36.380 -> 0x3: 0x34
...
20:24:37.028 -> 0x3B: 0x0
20:24:37.028 -> 0x3C: 0x1
20:24:37.063 -> 0x3D: 0x0
20:24:38.024 -> MessageIn:Hello world:212
20:24:38.848 -> MessageIn:hello world 8:24:38 PM
20:24:40.156 -> MessageIn:Hello world:213
20:24:42.293 -> MessageIn:Hello world:214
20:24:43.914 -> MessageIn:hello world 8:24:43 PM
20:24:44.427 -> MessageIn:Hello world:215
20:24:46.567 -> MessageIn:Hello world:216
20:24:48.674 -> MessageIn:Hello world:217
20:24:48.984 -> MessageIn:hello world 8:24:48 PM
20:24:50.841 -> MessageIn:Hello world:218
20:24:52.943 -> MessageIn:Hello world:219
20:24:54.044 -> MessageIn:hello world 8:24:53 PM
20:24:55.100 -> MessageIn:Hello world:220
20:24:57.235 -> MessageIn:Hello world:221
20:24:59.133 -> MessageIn:hello world 8:24:58 PM
20:24:59.377 -> MessageIn:Hello world:222
20:25:01.496 -> MessageIn:Hello world:223
20:25:03.655 -> MessageIn:Hello world:224
20:25:04.176 -> MessageIn:hello world 8:25:04 PM
20:25:05.777 -> MessageIn:Hello world:225
20:25:07.927 -> MessageIn:Hello world:226
20:25:09.281 -> MessageIn:hello world 8:25:09 PM
20:25:10.048 -> MessageIn:Hello world:227
20:25:12.208 -> MessageIn:Hello world:228
20:25:14.352 -> MessageIn:hello world 8:25:14 PM

The above trace is from the Arduino device configured to receive messages and it is receiving messages from the Windows 10 IoT Core device and the other Arduino.

RFM69 hat library Part7

Transmit Interrupt: Rasmatic/RFM69-Arduino-Library

I started with the transmit basic code, the first step was to add a parameter to the constructor for the interrupt pin connected to the RFM69HCW (based on Receive Interrupt code). I then added a Debug.Writeline my new interrupt handler to show when the message had been sent.

The Adafruit Radio Bonnet has pin 22 connected to the DIO0 pin the RFM69HCW so I set the RegDioMapping1 register to trigger DIO0 on PayloadSent. (Ignoring other flags)

/*
 Copyright ® 2019 June devMobile Software, All Rights Reserved

 MIT License

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in all
 copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 SOFTWARE

*/
namespace devMobile.IoT.Rfm69Hcw.TransmitInterrupt
{
	using System;
	using System.Diagnostics;
	using System.Runtime.InteropServices.WindowsRuntime;
	using System.Text;
	using System.Threading.Tasks;
	using Windows.ApplicationModel.Background;
	using Windows.Devices.Spi;
	using Windows.Devices.Gpio;


	public sealed class Rfm69HcwDevice
	{
		private SpiDevice Rfm69Hcw;
		private GpioPin InterruptGpioPin = null;
		private const byte RegisterAddressReadMask = 0X7f;
		private const byte RegisterAddressWriteMask = 0x80;

		public Rfm69HcwDevice(int chipSelectPin, int resetPin, int interruptPin)
		{
			SpiController spiController = SpiController.GetDefaultAsync().AsTask().GetAwaiter().GetResult();
			var settings = new SpiConnectionSettings(chipSelectPin)
			{
				ClockFrequency = 500000,
				Mode = SpiMode.Mode0,
			};


			// Factory reset pin configuration
			GpioController gpioController = GpioController.GetDefault();
			GpioPin resetGpioPin = gpioController.OpenPin(resetPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Output);
			resetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			resetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Interrupt pin for RX message & TX done notification 
			InterruptGpioPin = gpioController.OpenPin(interruptPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Input);

			InterruptGpioPin.ValueChanged += InterruptGpioPin_ValueChanged;

			Rfm69Hcw = spiController.GetDevice(settings);
		}

		private void InterruptGpioPin_ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs args)
		{
			if (args.Edge != GpioPinEdge.RisingEdge)
			{
				return;
			}

			byte irqFlags = this.RegisterReadByte(0x28); // RegIrqFlags2
			//Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags {1}", DateTime.Now, Convert.ToString((byte)irqFlags, 2).PadLeft(8, '0'));
			if ((irqFlags & 0b00001000) == 0b00001000)  // PacketSent set
			{
				Debug.WriteLine("{0:HH:mm:ss.fff} Transmit-Done", DateTime.Now);
			}
		}

		public Byte RegisterReadByte(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[1];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer[0];
		}

		public byte[] RegisterRead(byte address, int length)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[length];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer;
		}

		public void RegisterWriteByte(byte address, byte value)
		{
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, value };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterWrite(byte address, [ReadOnlyArray()] byte[] bytes)
		{
			byte[] writeBuffer = new byte[1 + bytes.Length];
			Debug.Assert(Rfm69Hcw != null);

			Array.Copy(bytes, 0, writeBuffer, 1, bytes.Length);
			writeBuffer[0] = address |= RegisterAddressWriteMask;

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterDump()
		{
			Debug.WriteLine("Register dump");
			for (byte registerIndex = 0; registerIndex <= 0x3D; registerIndex++)
			{
				byte registerValue = this.RegisterReadByte(registerIndex);

				Debug.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
			}
		}
	}


	public sealed class StartupTask : IBackgroundTask
	{
		private const int ChipSelectPin = 1;
		private const int ResetPin = 25;
		private const int InterruptPin = 22;
		private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectPin, ResetPin, InterruptPin);

		const double RH_RF6M9HCW_FXOSC = 32000000.0;
		const double RH_RFM69HCW_FSTEP = RH_RF6M9HCW_FXOSC / 524288.0;

		const byte NetworkID = 100;
		const byte NodeAddressFrom = 0x03;
		const byte NodeAddressTo = 0x02;


		public void Run(IBackgroundTaskInstance taskInstance)
		{
			//rfm69Device.RegisterDump();

			// regOpMode standby
			rfm69Device.RegisterWriteByte(0x01, 0b00000100);

			// BitRate MSB/LSB
			rfm69Device.RegisterWriteByte(0x03, 0x34);
			rfm69Device.RegisterWriteByte(0x04, 0x00);

			// Frequency deviation
			rfm69Device.RegisterWriteByte(0x05, 0x02);
			rfm69Device.RegisterWriteByte(0x06, 0x3d);

			// Calculate the frequency accoring to the datasheett
			byte[] bytes = BitConverter.GetBytes((uint)(915000000.0 / RH_RFM69HCW_FSTEP));
			Debug.WriteLine("Byte Hex 0x{0:x2} 0x{1:x2} 0x{2:x2} 0x{3:x2}", bytes[0], bytes[1], bytes[2], bytes[3]);
			rfm69Device.RegisterWriteByte(0x07, bytes[2]);
			rfm69Device.RegisterWriteByte(0x08, bytes[1]);
			rfm69Device.RegisterWriteByte(0x09, bytes[0]);

			// RegRxBW
			rfm69Device.RegisterWriteByte(0x19, 0x55);

			// RegDioMapping1 (Table 22 in the RFMHCW Datasheet)
			rfm69Device.RegisterWriteByte(0x26, 0x00);

			// Setup preamble length to 16 (default is 3)
			rfm69Device.RegisterWriteByte(0x2C, 0x0);
			rfm69Device.RegisterWriteByte(0x2D, 0x10);

			// Set the Sync length and byte values SyncOn + 3 custom sync bytes
			rfm69Device.RegisterWriteByte(0x2e, 0x90);

			rfm69Device.RegisterWriteByte(0x2f, 0xAA);
			rfm69Device.RegisterWriteByte(0x30, 0x2D);
			rfm69Device.RegisterWriteByte(0x31, 0xD4);

			// RegPacketConfig1 changed for Variable length after 9:00PM vs 10:00PM fail
			rfm69Device.RegisterWriteByte(0x37, 0x90);
			//rfm69Device.RegisterWriteByte(0x38, 0x14);

			rfm69Device.RegisterDump();

			while (true)
			{
				// Standby mode while loading message into FIFO
				rfm69Device.RegisterWriteByte(0x01, 0b00000100);

				byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes(" hello world " + DateTime.Now.ToLongTimeString());
				messageBuffer[0] = (byte)messageBuffer.Length;
				rfm69Device.RegisterWrite(0x0, messageBuffer);

				// Transmit mode once FIFO loaded
				rfm69Device.RegisterWriteByte(0x01, 0b00001100);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

				Task.Delay(5000).Wait();
			}
		}
	}
}

I used the same Arduino device and code as my polled transmit sample and it worked first time. Which is very unusually and worries me as my code never works first time.

Register dump
Register 0x00 - Value 0X00 - Bits 00000000
Register 0x01 - Value 0X04 - Bits 00000100
Register 0x02 - Value 0X00 - Bits 00000000
…
Register 0x3b - Value 0X00 - Bits 00000000
Register 0x3c - Value 0X0f - Bits 00001111
Register 0x3d - Value 0X02 - Bits 00000010
20:44:41.152 Send-Done
20:44:41.343 Transmit-Done
The thread 0xca4 has exited with code 0 (0x0).
The thread 0x9e0 has exited with code 0 (0x0).
20:44:46.205 Send-Done
20:44:46.356 Transmit-Done
20:44:51.242 Send-Done
20:44:51.393 Transmit-Done
The thread 0x1238 has exited with code 0 (0x0).
20:44:56.323 Send-Done
20:44:56.473 Transmit-Done
The thread 0x41c has exited with code 0 (0x0).
20:45:01.389 Send-Done
20:45:01.540 Transmit-Done
The thread 0xaec has exited with code 0 (0x0).
20:45:06.459 Send-Done
20:45:06.610 Transmit-Done
The thread 0x1440 has exited with code 0 (0x0).
20:45:11.535 Send-Done
20:45:11.686 Transmit-Done

I ran the Windows 10 IoT Core Transmit Interrupt client for half an hour (no memory allocation etc. so in theory less to go wrong) and it didn’t appear to drop any send completion interrupts.

I then added the decimal seconds value so I could work out how long it takes for a message to get sent, which is roughly 150mSec.