The Things Network MQTT & Azure IoT Part3B

MQTT Topics and case sensitivity

To send LoRaWAN messages using The Things Network Message Queue Telemetry Transport(MQTT) Data API with JSON payloads there are two topics

  • v3/{application id}@{tenant id}/devices/{device id}/down/push.
  • v3/{application id}@{tenant id}/devices/{device id}/down/replace.

My Azure IoT Hub messages have properties for the LoRaWAN port (required), confirmed (which defaults to false), priority (which defaults to Normal) and queue(which defaults to Replace). The priority and queue enumerations are defined in TTNcommon.cs.

I used the enumeration for message priority in the JSON payload and MQTT downlink message topic.

{
  "downlinks": [{
    "f_port": 15,
    "frm_payload": "vu8=",
    "priority": "NORMAL"
  }]
}
string downlinktopic = $"v3/{ApplicationId}@{TenantId}/devices/{DeviceId}/down/{Enum.GetName(typeof(DownlinkQueue), queue)}".ToLower();

Initially when I published a message it wasn’t sent and there was no error. It was a while before I noticed that the queue setting was being being converted to the text “Push” or “Replace” based on the enumeration value name (The priority value was in the JSON which is case insensitive). I did wonder if the tenantId and ApplicationId were also case sensitive so I ensured consistent capitalisation with ToLower();

floor, ceil, trunc and casting

I left a Wisnode Track Lite RAK7200 outside on the deck for a day and the way the positions “snapped” to a grid caught my attention. Based on the size of my property the grid looked to be roughly 10 x 10 meters

The sample Cayenne Low Power Payload Mbed C code uses a cast which is I think is the same as a floor.

uint8_t CayenneLPP::addGPS(uint8_t channel, float latitude, float longitude, float meters) {
    if ((cursor + LPP_GPS_SIZE) > maxsize) {
        return 0;
    }
    int32_t lat = latitude * 10000;
    int32_t lon = longitude * 10000;
    int32_t alt = meters * 100;
    
    buffer[cursor++] = channel; 
    buffer[cursor++] = LPP_GPS; 
 
    buffer[cursor++] = lat >> 16; 
    buffer[cursor++] = lat >> 8; 
    buffer[cursor++] = lat; 
    buffer[cursor++] = lon >> 16; 
    buffer[cursor++] = lon >> 8; 
    buffer[cursor++] = lon; 
    buffer[cursor++] = alt >> 16; 
    buffer[cursor++] = alt >> 8;
    buffer[cursor++] = alt;
 
    return cursor;
}

“These functions round x downwards to the nearest integer, returning that value as a double. Thus, floor (1.5) is 1.0 and floor (-1.5) is -2.0.”

In the C code the latitude and longitude values are truncated to four decimal places and the altitude to two decimal places. In my C# code I used Math.Round and I wondered what impact that could have…

public void GpsLocationAdd(byte channel, float latitude, float longitude, float altitude)
{
   IsChannelNumberValid(channel);
   IsBfferSizeSufficient(Enumerations.DataType.Gps);

   if ((latitude < Constants.LatitudeMinimum ) || (latitude > Constants.LatitudeMaximum))
   {
      throw new ArgumentException($"Latitude must be between {Constants.LatitudeMinimum} and {Constants.LatitudeMaximum}", "latitude");
   }

   if ((latitude < Constants.LongitudeMinimum) || (latitude > Constants.LongitudeMaximum))
   {
      throw new ArgumentException($"Longitude must be between {Constants.LongitudeMinimum} and {Constants.LongitudeMaximum}", "latitude");
   }

   if ((altitude < Constants.AltitudeMinimum) || (altitude > Constants.AltitudeMaximum))
   {
      throw new ArgumentException($"Altitude must be between {Constants.AltitudeMinimum} and {Constants.AltitudeMaximum}", "altitude");
   }

   int lat = (int)Math.Round(latitude * 10000.0f);
   int lon = (int)Math.Round(longitude * 10000.0f);
   int alt = (int)Math.Round(altitude * 100.0f);

   buffer[index++] = channel;
   buffer[index++] = (byte)Enumerations.DataType.Gps;

   buffer[index++] = (byte)(lat >> 16);
   buffer[index++] = (byte)(lat >> 8);
   buffer[index++] = (byte)lat;
   buffer[index++] = (byte)(lon >> 16);
   buffer[index++] = (byte)(lon >> 8);
   buffer[index++] = (byte)lon;
   buffer[index++] = (byte)(alt >> 16);
   buffer[index++] = (byte)(alt >> 8);
   buffer[index++] = (byte)alt;
}

Using the WGS84 World Geodetic System Distance Calculator to calculate the distance where the Greenwich Meridian and the Equator cross off the coast of Ghana the theoretical maximum error is 15.69m.

I live in Christchurch New Zealand and the theoretical maximum distance is 13.6 m. So, in summary the LPP latitude and longitude values are most probably fine for tracking applications.

MATH131 Numerical methods was useful

Back in 1986 in my second first year at the University of Canterbury I did “MATH131 Numerical Methods” which was a year of looking at why mathematics in FORTRAN, C, and Pascal sometimes didn’t return the result you were expecting…

While testing my GHI Electronics TinyCLR2 RAK Wireless RAK811 LoRaWAN client I noticed the temperature numbers didn’t quite match…

Visual Studio 2019 Debug output window
The Things Network Device Application Data tab

I have implemented my own Cayenne Low Power Payload encoder in C# based on the sample Mbed C code

uint8_t CayenneLPP::addTemperature(uint8_t channel, float celsius) {
    if ((cursor + LPP_TEMPERATURE_SIZE) > maxsize) {
        return 0;
    }
    int16_t val = celsius * 10;
    buffer[cursor++] = channel; 
    buffer[cursor++] = LPP_TEMPERATURE; 
    buffer[cursor++] = val >> 8; 
    buffer[cursor++] = val; 

    return cursor;
}

My translation of that code to C#

public void TemperatureAdd(byte channel, float celsius)
{
   if ((index + TemperatureSize) > buffer.Length)
   {
      throw new ApplicationException("TemperatureAdd insufficent buffer capacity");
   }

   short val = (short)(celsius * 10);

   buffer[index++] = channel;
   buffer[index++] = (byte)DataType.Temperature;
   buffer[index++] = (byte)(val >> 8);
   buffer[index++] = (byte)val;
}

After looking at the code I think the issues was most probably due to the representation of the constant 10(int32), 10.0(double), and 10.0f(single) . To confirm my theory I modified the client to send the temperature with the calculation done with three different constants.

Visual Studio 2019 Debug output window
The Things Network(TTN) Message Queue Telemetry Transport(MQTT) client

After some trial and error I settled on this C# code for my decoder

public void TemperatureAdd(byte channel, float celsius)
{
   if ((index + TemperatureSize) > buffer.Length)
   {
      throw new ApplicationException("TemperatureAdd insufficent buffer capacity");
   }

   short val = (short)(celsius * 10.0f);

   buffer[index++] = channel;
   buffer[index++] = (byte)DataType.Temperature;
   buffer[index++] = (byte)(val >> 8);
   buffer[index++] = (byte)val;
}

I don’t think this is specifically an issue with the TinyCLR V2 just with number type used for the constant.

TTN V3 EndDevice API Basic Client

The next step was to enumerate all the EndDevices of a The Things Network(TTN) Application and display their attributes. I have to establish an Azure DeviceClient connection to an Azure IoT Hub for each TTN EndDevice to get downlink messages. To do this I will have to enumerate the TTN Applications in the instance then enumerate the LoRaWAN EndDevices.

using (HttpClient httpClient = new HttpClient())
{
	EndDeviceRegistryClient endDeviceRegistryClient = new EndDeviceRegistryClient(baseUrl, httpClient)
	{
		ApiKey = apiKey
	};

	try
	{
#if FIELDS_MINIMUM
		string[] fieldMaskPathsDevice = { "attributes" }; // think this is the bare minimum required for integration
#else
		string[] fieldMaskPathsDevice = { "name", "description", "attributes" };
#endif
		V3EndDevices endDevices = await endDeviceRegistryClient.ListAsync(applicationID, field_mask_paths:fieldMaskPathsDevice);
		if ((endDevices != null) && (endDevices.End_devices != null)) // If there are no devices returns null rather than empty list
		{
			foreach (V3EndDevice endDevice in endDevices.End_devices)
			{
#if FIELDS_MINIMUM
				Console.WriteLine($"EndDevice ID:{endDevice.Ids.Device_id}");
#else
				Console.WriteLine($"Device ID:{endDevice.Ids.Device_id} Name:{endDevice.Name} Description:{endDevice.Description}");
				Console.WriteLine($"  CreatedAt: {endDevice.Created_at:dd-MM-yy HH:mm:ss} UpdatedAt: {endDevice.Updated_at:dd-MM-yy HH:mm:ss}");
#endif
				if (endDevice.Attributes != null)
				{
					Console.WriteLine("  EndDevice attributes");

					foreach (KeyValuePair<string, string> attribute in endDevice.Attributes)
					{
						Console.WriteLine($"    Key: {attribute.Key} Value: {attribute.Value}");
					}
				}
				Console.WriteLine();
			}
		}
	}
	catch (Exception ex)
	{
		Console.WriteLine(ex.Message);
	}

	Console.WriteLine("Press <enter> to exit");
	Console.ReadLine();
}

Like the applicationRegistryClient.ListAsync call the endDeviceRegistryClient.ListAsync also returns null rather than an empty list.

I also wanted to explore whether I could use EndDevice attributes to populate the ClientOptions ModelId of my CreateFromConnectionString call. The modelId would contain the Digital Twins Definition Language(DTDL) ID of the LoRaWAN device so it could be automatically provisioned.

TTN V3 Application API Basic Paging and Filtering Client

The next step was to enumerate The Things Network(TTN) Applications so I could connect only to the required Azure IoT hub(s). There would also be a single configuration setting for the client (establish a connection for every TTN application, or don’t establish a connection for any) and this could be overridden with a TTN application attribute

long pageSize = long.Parse(args[3]);
Console.WriteLine($"Page size: {pageSize}");

Console.WriteLine();

using (HttpClient httpClient = new HttpClient())
{
	ApplicationRegistryClient applicationRegistryClient = new ApplicationRegistryClient(baseUrl, httpClient)
	{
		ApiKey = apiKey
	};

	try
	{
		int page = 1;

		string[] fieldMaskPathsApplication = { "attributes" }; // think this is the bare minimum required for integration

		V3Applications applications = await applicationRegistryClient.ListAsync(collaborator, field_mask_paths: fieldMaskPathsApplication, limit: pageSize, page: page);
		while ((applications != null) && (applications.Applications != null)) 
		{
			Console.WriteLine($"Applications:{applications.Applications.Count} Page:{page} Page size:{pageSize}");
			foreach (V3Application application in applications.Applications)
			{
				bool applicationIntegration = ApplicationAzureintegrationDefault;

				Console.WriteLine($"Application ID:{application.Ids.Application_id}");
				if (application.Attributes != null)
				{
					string ApplicationAzureIntegrationValue = string.Empty;
					if (application.Attributes.TryGetValue(ApplicationAzureIntegrationField, out ApplicationAzureIntegrationValue))
					{
						bool.TryParse(ApplicationAzureIntegrationValue, out applicationIntegration);
					}

					if (applicationIntegration)
					{
						Console.WriteLine("  Application attributes");

						foreach (KeyValuePair<string, string> attribute in application.Attributes)
						{
							Console.WriteLine($"   Key: {attribute.Key} Value: {attribute.Value}");
						}
					}
				}
				Console.WriteLine();
			}
			page += 1;
			applications = await applicationRegistryClient.ListAsync(collaborator, field_mask_paths: fieldMaskPathsApplication, limit: pageSize, page: page);
		};
	}
	catch (Exception ex)
	{
		Console.WriteLine(ex.Message);
	}

	Console.WriteLine("Press <enter> to exit");
	Console.ReadLine();
}

I Used the field_mask_paths parameter (don’t need created_at, updated_at, name etc.) to minimise the data returned to my client.

public async System.Threading.Tasks.Task<V3Applications> ListAsync(string collaborator_organization_ids_organization_id = null, string collaborator_user_ids_user_id = null, string collaborator_user_ids_email = null, System.Collections.Generic.IEnumerable<string> field_mask_paths = null, string order = null, long? limit = null, long? page = null, System.Threading.CancellationToken cancellationToken = default(System.Threading.CancellationToken))
{
   var urlBuilder_ = new System.Text.StringBuilder();
   urlBuilder_.Append(BaseUrl != null ? BaseUrl.TrimEnd('/') : "").Append("/applications?");
   if (collaborator_organization_ids_organization_id != null) 
   {
         urlBuilder_.Append(System.Uri.EscapeDataString("collaborator.organization_ids.organization_id") + "=").Append(System.Uri.EscapeDataString(ConvertToString(collaborator_organization_ids_organization_id, System.Globalization.CultureInfo.InvariantCulture))).Append("&");
   }
   if (collaborator_user_ids_user_id != null) 
   {
         urlBuilder_.Append(System.Uri.EscapeDataString("collaborator.user_ids.user_id") + "=").Append(System.Uri.EscapeDataString(ConvertToString(collaborator_user_ids_user_id, System.Globalization.CultureInfo.InvariantCulture))).Append("&");
   }
   if (collaborator_user_ids_email != null) 
   {
         urlBuilder_.Append(System.Uri.EscapeDataString("collaborator.user_ids.email") + "=").Append(System.Uri.EscapeDataString(ConvertToString(collaborator_user_ids_email, System.Globalization.CultureInfo.InvariantCulture))).Append("&");
   }
   if (field_mask_paths != null) 
   {
         foreach (var item_ in field_mask_paths) { urlBuilder_.Append(System.Uri.EscapeDataString("field_mask.paths") + "=").Append(System.Uri.EscapeDataString(ConvertToString(item_, System.Globalization.CultureInfo.InvariantCulture))).Append("&"); }
   }
   if (order != null) 
   {
         urlBuilder_.Append(System.Uri.EscapeDataString("order") + "=").Append(System.Uri.EscapeDataString(ConvertToString(order, System.Globalization.CultureInfo.InvariantCulture))).Append("&");
   }
   if (limit != null) 
   {
         urlBuilder_.Append(System.Uri.EscapeDataString("limit") + "=").Append(System.Uri.EscapeDataString(ConvertToString(limit, System.Globalization.CultureInfo.InvariantCulture))).Append("&");
   }
   if (page != null) 
   {
         urlBuilder_.Append(System.Uri.EscapeDataString("page") + "=").Append(System.Uri.EscapeDataString(ConvertToString(page, System.Globalization.CultureInfo.InvariantCulture))).Append("&");
   }
}

I was hoping that there would be a away to further “shape” the returned data, but in the NSwag generated code the construction of the URL with field_mask_paths, order, limit, and page parameters meant this appears not to be possible.

TTN V3 Application API Basic Paging Client

The next step was to enumerate The Things Network(TTN) Applications and their attributes. I’m planning on using attributes to manage which applications (and in future EndDevices) are enabled in my Advanced Message Queuing Protocol(AMQP) client.

In the code I have left the different paging implementations which I trialled but abandoned.

using (HttpClient httpClient = new HttpClient())
{
	ApplicationRegistryClient applicationRegistryClient = new ApplicationRegistryClient(baseUrl, httpClient)
	{
		ApiKey = apiKey
	};

	try
	{
		int page = 1;
		string[] fieldMaskPathsApplication = { "attributes" };

		V3Applications applications = await applicationRegistryClient.ListAsync(collaborator, field_mask_paths: fieldMaskPathsApplication, limit:pageSize, page: page);
		while ((applications != null) && (applications.Applications != null))
		{ 
			Console.WriteLine($"Applications:{applications.Applications.Count} Page:{page} Page size:{pageSize}");
			foreach (V3Application application in applications.Applications)
			{
				Console.WriteLine($"Application ID:{application.Ids.Application_id}"); 
				if (application.Attributes != null)
				{
					Console.WriteLine("  Application attributes");

					foreach (KeyValuePair<string, string> attribute in application.Attributes)
					{
						Console.WriteLine($"   Key: {attribute.Key} Value: {attribute.Value}");
					}
				}
				Console.WriteLine();
			}
			page += 1;
			applications = await applicationRegistryClient.ListAsync(collaborator, field_mask_paths: fieldMaskPathsApplication, limit: pageSize, page: page);
		}
	}   
}

For each LoraWAN client I have to have an open connection to the Azure IoT hub to get Cloud to Device (C2D) messages so I’m looking at using connection pooling to reduce the overall number of connections.

I think the Azure ClientDevice library supports up to 995 devices per connection and has quiet a lot of additional functionality.

/// <summary>
/// contains Amqp Connection Pool settings for DeviceClient
/// </summary>
public sealed class AmqpConnectionPoolSettings
{
   private static readonly TimeSpan s_defaultConnectionIdleTimeout = TimeSpan.FromMinutes(2);
    private uint _maxPoolSize;
    internal const uint MaxDevicesPerConnection = 995; // IotHub allows upto 999 tokens per connection. Setting the threshold just below that.

    /// <summary>
    /// The default size of the pool
    /// </summary>
    /// <remarks>
    /// Allows up to 100,000 devices
    /// </remarks>
    private const uint DefaultPoolSize = 100;

    /// <summary>
    /// The maximum value that can be used for the MaxPoolSize property
    /// </summary>
     public const uint AbsoluteMaxPoolSize = ushort.MaxValue;

    /// <summary>
    /// Creates an instance of AmqpConnecitonPoolSettings with default properties
    /// </summary>
    public AmqpConnectionPoolSettings()
    {
       _maxPoolSize = DefaultPoolSize;
       Pooling = false;
    }

Whereas I think AMQPNetLite may support more, but will require me to implement more of the Azure IoT client interface

/// <summary>
/// The default maximum frame size used by the library.
/// </summary>
public const uint DefaultMaxFrameSize = 64 * 1024;
internal const ushort DefaultMaxConcurrentChannels = 8 * 1024;
internal const uint DefaultMaxLinkHandles = 256 * 1024;
internal const uint DefaultHeartBeatInterval = 90000;
internal const uint MinimumHeartBeatIntervalMs = 5 * 1000;

I have got todo some more research to see which library is easier/requires more code/complex/scales better.

TTN V3 Application API Basic Client

After reviewing the initial implementation I found I had to have one connection per The Things Network(TTN) device. Todo this I first have to enumerate the LoRaWAN Devices for each Application in my instance. First I had to add the TTN APIKey to the application and device registry requests.

namespace devMobile.TheThingsNetwork.API
{
	public partial class EndDeviceRegistryClient
	{
		public string ApiKey { set; get; }

		partial void PrepareRequest(System.Net.Http.HttpClient client, System.Net.Http.HttpRequestMessage request, string url)
		{
			if (!client.DefaultRequestHeaders.Contains("Authorization"))
			{
				client.DefaultRequestHeaders.Add("Authorization", $"Bearer {ApiKey}");
			}
		}
	}

	public partial class ApplicationRegistryClient
	{
		public string ApiKey { set; get; }

		partial void PrepareRequest(System.Net.Http.HttpClient client, System.Net.Http.HttpRequestMessage request, string url)
		{
			if (!client.DefaultRequestHeaders.Contains("Authorization"))
			{
				client.DefaultRequestHeaders.Add("Authorization", $"Bearer {ApiKey}");
			}
		}
	}
}

The first step was to enumerate Applications and their attributes

#if FIELDS_MINIMUM
	string[] fieldMaskPathsApplication = { "attributes" }; // think this is the bare minimum required for integration
#else
	string[] fieldMaskPathsApplication = { "name", "description", "attributes" };
#endif

	V3Applications applications = await applicationRegistryClient.ListAsync(collaborator, field_mask_paths: fieldMaskPathsApplication);
	if ((applications != null) && (applications.Applications != null)) // If there are no applications returns null rather than empty list
	{
		foreach (V3Application application in applications.Applications)
		{
#if FIELDS_MINIMUM
			Console.WriteLine($"Application ID:{application.Ids.Application_id}");
#else
			Console.WriteLine($"Application ID:{application.Ids.Application_id} Name:{application.Name} Description:{application.Description}");
			Console.WriteLine($"  CreatedAt: {application.Created_at:dd-MM-yy HH:mm:ss} UpdatedAt: {application.Updated_at:dd-MM-yy HH:mm:ss}");
#endif
			if (application.Attributes != null)
			{
				Console.WriteLine("  Application attributes");

				foreach (KeyValuePair<string, string> attribute in application.Attributes)
				{
					Console.WriteLine($"    Key: {attribute.Key} Value: {attribute.Value}");
				}
			}
			Console.WriteLine();
		}
	}
}

The applicationRegistryClient.ListAsync call returns null rather than an empty list which tripped me up. I only found this when I deleted all the applications in my instance and started from scratch.

The Things Network Cayenne LPP Support

Uplink Encoding

In my applications the myDevices Cayenne Low power payload(LPP) uplink messages from my *duino devices are decoded by the built in The Things Network(TTN) decoder. I can also see the nicely formatted values in the device data view.

Downlink Encoding

I could successfully download raw data to the device but I found that manually unpacking it on the device was painful.

Raw data

I really want to send LPP formatted messages to my devices so I could use a standard LPP library. I initially populated the payload fields in the downlink message JSON. The TTN documentation appeared to indicate this was possible.

Download JSON payload format

Initially I tried a more complex data type because I was looking at downloading a location to the device.

Complex data type

I could see nicely formatted values in the device data view but they didn’t arrive at the device. I then tried simpler data type to see if the complex data type was an issue.

Simple Data Types

At this point I asked a few questions on the TTN forums and started to dig into the TTN source code.

Learning Go on demand

I had a look at the TTB Go code and learnt a lot as I figured out how the “baked in “encoder/decoder worked. I haven’t done any Go coding so it took a while to get comfortable with the syntax. The code my look a bit odd as a Pascal formatter was the closest I could get to Go.

In core/handler/cayennelpp/encoder.go there was

func (e *Encoder) Encode(fields map[string]interface{}, fPort uint8) ([]byte, bool, error) and func (d *Decoder) Decode(payload []byte, fPort uint8) (map[string]interface{}, bool, error)

Which was a positive sign…

Then in core/handler/convert_fields.go there are these two functions

> // ConvertFieldsUp converts the payload to fields using the application's payload formatter
> func (h *handler) ConvertFieldsUp(ctx ttnlog.Interface, _ *pb_broker.DeduplicatedUplinkMessage, appUp *types.UplinkMessage, dev *device.Device) error {
> 	// Find Application

and

> // ConvertFieldsDown converts the fields into a payload
> func (h *handler) ConvertFieldsDown(ctx ttnlog.Interface, appDown *types.DownlinkMessage, ttnDown *pb_broker.DownlinkMessage, _ *device.Device) error {

Then further down in the second function is this call

var encoder PayloadEncoder
	switch app.PayloadFormat {
	case application.PayloadFormatCustom:
		encoder = &CustomDownlinkFunctions{
			Encoder: app.CustomEncoder,
			Logger:  functions.Ignore,
		}
	case application.PayloadFormatCayenneLPP:
		encoder = &cayennelpp.Encoder{}
	default:
		return nil
	}var encoder PayloadEncoder
	switch app.PayloadFormat {
	case application.PayloadFormatCustom:
		encoder = &CustomDownlinkFunctions{
			Encoder: app.CustomEncoder,
			Logger:  functions.Ignore,
		}
	case application.PayloadFormatCayenneLPP:
		encoder = &cayennelpp.Encoder{}
	default:
		return nil
	}

Which I think calls

// Encode encodes the fields to CayenneLPP
func (e *Encoder) Encode(fields map[string]interface{}, fPort uint8) ([]byte, bool, error) {
	encoder := protocol.NewEncoder()
	for name, value := range fields {
		key, channel, err := parseName(name)
		if err != nil {
			continue
		}
		switch key {
		case valueKey:
			if val, ok := value.(float64); ok {
				encoder.AddPort(channel, float32(val))
			}
		}
	}
	return encoder.Bytes(), true, nil
}

Then right down at the very bottom of the call stack in keys.go

func parseName(name string) (string, uint8, error) {
	parts := strings.Split(name, "_")
	if len(parts) < 2 {
		return "", 0, errors.New("Invalid name")
	}
	key := strings.Join(parts[:len(parts)-1], "_")
	if key == "" {
		return "", 0, errors.New("Invalid key")
	}
	channel, err := strconv.Atoi(parts[len(parts)-1])
	if err != nil {
		return "", 0, err
	}
	if channel < 0 || channel > 255 {
		return "", 0, errors.New("Invalid range")
	}
	return key, uint8(channel), nil
}

At this point I started to hit the limits of my Go skills but with some trial and error I figured it out…

Executive Summary

The downlink payload values are sent as 2 byte floats with a sign bit, 100 multiplier. The fields have to be named “value_X” where X is is a byte value.

Dictionary<string, object> payloadFields = new Dictionary<string, object>();
payloadFields.Add(“value_0”, 0.0);
//00-00-00
payloadFields.Add(“value_1”, 1.0);
//01-00-64
payloadFields.Add(“value_2”, 2.0);
//02-00-C8
payloadFields.Add(“value_3”, 3.0);
//03-01-2C
payloadFields.Add(“value_4”, 4.0);
//04-01-90

payloadFields.Add(“value_0”, -0.0);
//00-00-00
payloadFields.Add(“value_1”, -1.0);
//01-FF-9C
payloadFields.Add(“value_2”, -2.0);
//02-FF-38
payloadFields.Add(“value_3”, -3.0);
//03-FE-D4
payloadFields.Add(“value_4”, -4.0);
//04-FE-70

I could see these arrive on my TinyCLR plus RAK811 device and could manually unpack them

The stream of bytes can be decoded on an Arduino using the electronic cats library (needs a small modification) with code this

byte data[] = {0xff,0x38} ; // bytes which represent -2 
float value = lpp.getValue( data, 2, 100, 1);
Serial.print("value:");
Serial.println(value);

It is possible to use the “baked” in Cayenne Encoder/Decoder to send payload fields to a device but I’m not certain is this is quite what myDevices/TTN intended.

The Things Network HTTP Integration Part13

Connection multiplexing

For the Proof of Concept(PoC) I had used a cache to store Azure IoT Hub connections to reduce the number of calls to the Device Provisioning Service(DPS).

Number of connections with no pooling

When stress testing with 1000’s of devices my program hit the host connection limit so I enabled Advanced Message Queuing Protocol(AMQP) connection pooling.

return DeviceClient.Create(result.AssignedHub,
                  authentication,
                  new ITransportSettings[]
                  {
                     new AmqpTransportSettings(TransportType.Amqp_Tcp_Only)
                     {
                        PrefetchCount = 0,
                        AmqpConnectionPoolSettings = new AmqpConnectionPoolSettings()
                        {
                           Pooling = true,
                        }
                     }
                  }
               );

My first attempt failed as I hadn’t configured “TransportType.Amqp_Tcp_Only” which would have allowed the AMQP implementation to fallback to other protocols which don’t support pooling.

Exception caused by not using TransportType.Amqp_Tcp_Only

I then deployed the updated code and ran my 1000 device stress test (note the different x axis scales)

Number of connections with pooling

This confirmed what I found in the Azure.AMQP source code

/// <summary>
/// The default size of the pool
/// </summary>
/// <remarks>
/// Allows up to 100,000 devices
/// </remarks>
/// private const uint DefaultPoolSize = 100;

The Things Network HTTP Integration Part12

Removing the DIY cache

For the Proof of Concept(PoC) I had written a simple cache using a ConcurrentDictionary to store Azure IoT Hub connections to reduce the number of calls to the Device Provisioning Service(DPS).

Device Provisioning Service calls in stress test

For a PoC the DIY cache was ok but I wanted to replace it with something more robust like the .Net ObjectCache which is in the System.Runtime.Caching namespace.

I started by replacing the ConcurrentDictionary declaration

static readonly ConcurrentDictionary<string, DeviceClient> DeviceClients = new ConcurrentDictionary<string, DeviceClient>();
     

With an ObjectCache declaration.

static readonly ObjectCache DeviceClients = MemoryCache.Default;
  

Then, where there were compiler errors I updated the method call.

// See if the device has already been provisioned or is being provisioned on another thread.
if (DeviceClients.Add(registrationId, deviceContext, cacheItemPolicy))
{
   log.LogInformation("RegID:{registrationId} Device provisioning start", registrationId);
...

One difference I found was that ObjectCache throws an exception if the value is null. I was using a null value to indicate that the Device Provisioning Service(DPS) process had been initiated on another thread and was underway.

I have been planning to add support for downlink messages so I added a new class to store the uplink (Azure IoT Hub DeviceClient) and downlink ( downlink_url in the uplink message) details.

 public class DeviceContext
   {
      public DeviceClient Uplink { get; set; }
      public Uri Downlink { get; set; }
   }

For the first version the only functionality I’m using is sliding expiration which is set to one day

CacheItemPolicy cacheItemPolicy = new CacheItemPolicy()
{
   SlidingExpiration = new TimeSpan(1, 0, 0, 0),
   //RemovedCallback
};

DeviceContext deviceContext = new DeviceContext()
{
   Uplink = null,
   Downlink = new Uri(payload.DownlinkUrl)
};

I didn’t have to make many changes and I’ll double check my implementation in the next round of stress and soak testing.