netMF Electric Longboard Part 2

Analog Inputs & Pulse Width Modulation

The next step was to figure out how to configure a Pulse Width Modulation (PWM) output and an Analog Input so I could adjust the duty cycle and control the brightness of a Light Emitting Diode(LED).

Netduino 3 ADC & PWN test rig

My test rig uses (prices as at Aug 2020) the following parts

  • Netduino 3 Wifi
  • Grove-Base Shield V2.0 for Arduino USD4.45
  • Grove-Universal 4 Pin Bucked 5cm cable(5 PCs Pack) USD1.90
  • Grove-Universal 4 Pin Bucked 20cm cable(5 PCs Pack) USD2.90
  • Grove-LED Pack USD2.90
  • Grove-Rotary Angle Sensor USD2.90

My analog input test harness

 public class Program
   {
      public static void Main()
      {
         Debug.WriteLine("devMobile.Longboard.AdcTest starting");
         Debug.WriteLine(AdcController.GetDeviceSelector());

         try
         {
            AdcController adc = AdcController.GetDefault();
            AdcChannel adcChannel = adc.OpenChannel(0);

            while (true)
            {
               double value = adcChannel.ReadRatio();

               Debug.WriteLine($"Value: {value:F2}");

               Thread.Sleep(100);
            }
         }
         catch (Exception ex)
         {
            Debug.WriteLine(ex.Message);
         }
      }
   }

The nanoFramework code polls for the rotary angle sensor for its position value every 100mSec.

The setup to use for the Analog to Digital Convertor(ADC) port was determined by looking at the board.h and target_windows_devices_adc_config.cpp file.

//
// Copyright (c) 2018 The nanoFramework project contributors
// See LICENSE file in the project root for full license information.
//

#include <win_dev_adc_native_target.h>

const NF_PAL_ADC_PORT_PIN_CHANNEL AdcPortPinConfig[] = {
    
    // ADC1
    {1, GPIOC, 0, ADC_CHANNEL_IN10},
    {1, GPIOC, 1, ADC_CHANNEL_IN11},

    // ADC2
    {2, GPIOC, 2, ADC_CHANNEL_IN14},
    {2, GPIOC, 3, ADC_CHANNEL_IN15},

    // ADC3
    {3, GPIOC, 4, ADC_CHANNEL_IN12},
    {3, GPIOC, 5, ADC_CHANNEL_IN13},

    // these are the internal sources, available only at ADC1
    {1, NULL, 0, ADC_CHANNEL_SENSOR},
    {1, NULL, 0, ADC_CHANNEL_VREFINT},
    {1, NULL, 0, ADC_CHANNEL_VBAT},
};

const int AdcChannelCount = ARRAYSIZE(AdcPortPinConfig);

The call to AdcController.GetDeviceSelector() only returned one controller

The thread '<No Name>' (0x2) has exited with code 0 (0x0).
devMobile.Longboard.AdcTest starting
ADC1

After some experimentation it appears that only A0 & A1 work on a Netduino. (Aug 2020).

My PWM test harness

public class Program
{
   public static void Main()
   {
      Debug.WriteLine("devMobile.Longboard.PwmTest starting");
      Debug.WriteLine(PwmController.GetDeviceSelector());

      try
      {
         PwmController pwm = PwmController.FromId("TIM5");
         AdcController adc = AdcController.GetDefault();
         AdcChannel adcChannel = adc.OpenChannel(0);

         PwmPin pwmPin = pwm.OpenPin(PinNumber('A', 0));
         pwmPin.Controller.SetDesiredFrequency(1000);
         pwmPin.Start();

         while (true)
         {
            double value = adcChannel.ReadRatio();

            Debug.WriteLine(value.ToString("F2"));

            pwmPin.SetActiveDutyCyclePercentage(value);

            Thread.Sleep(100);
         }
      }
      catch (Exception ex)
      {
         Debug.WriteLine(ex.Message);
      }
   }

   private static int PinNumber(char port, byte pin)
   {
      if (port < 'A' || port > 'J')
         throw new ArgumentException();
      return ((port - 'A') * 16) + pin;
   }
}

I had to refer to the Netduino schematic to figure out pin mapping

With my test rig (with easy access to D0 to D8)I found that only D2,D3,D7 and D8 worked as PWM outputs.

The next test rig will be getting Servo working.

netMF Electric Longboard Part 1

Wiichuck connectivity

Roughly four years ago I build myself an electric longboard as summer transport. It initially had a controller built with a devDuino V2.2 which after a while I “upgraded” to a GHI Electronics .NET Microframework device.

Configuring the original netMF based longboard

Now that GHI Electronics no longer supports the FEZ Panda III I figured upgrading to a device that runs the nanoFramework would be a good compromise.

I control the speed of the longboard with a generic wireless wii nunchuk. So my first project is porting the .NET Micro Framework Toolbox code to the nanoFramework.

wireless controller test rig

My test rig uses (prices as at Aug 2020) the following parts

  • Netduino 3 Wifi
  • Grove-Base Shield V2.0 for Arduino USD4.45
  • Grove-Universal 4 Pin Bucked 5cm cable(5 PCs Pack) USD1.90
  • Grove-Nunchuck USD2.90
  • Generic wireless WII nunchuk

My changes were mainly related to the Inter Integrated Circuit(I2C) configuration and the reading+writing of registers.

/// <summary>
/// Initialises a new Wii Nunchuk
/// </summary>
/// <param name="busId">The unique identifier of the I²C to use.</param>
/// <param name="slaveAddress">The I²C address</param>
/// <param name="busSpeed">The bus speed, an enumeration that defaults to StandardMode</param>
/// <param name="sharingMode">The sharing mode, an enumeration that defaults to Shared.</param>
public WiiNunchuk(string busId, ushort slaveAddress = 0x52, I2cBusSpeed busSpeed = I2cBusSpeed.StandardMode, I2cSharingMode sharingMode = I2cSharingMode.Shared)
   {
      I2cTransferResult result;

      // This initialisation routine seems to work. I got it at http://wiibrew.org/wiki/Wiimote/Extension_Controllers#The_New_Way
      Device = I2cDevice.FromId(busId, new I2cConnectionSettings(slaveAddress)
      {
         BusSpeed = busSpeed,
         SharingMode = sharingMode,
      });

      result = Device.WritePartial(new byte[] { 0xf0, 0x55 });
      if (result.Status != I2cTransferStatus.FullTransfer)
      {
         throw new ApplicationException("Something went wrong reading the Nunchuk. Did you use proper pull-up resistors?");
      }

      result = Device.WritePartial(new byte[] { 0xfb, 0x00 });
      if (result.Status != I2cTransferStatus.FullTransfer)
      {
         throw new ApplicationException("Something went wrong reading the Nunchuk. Did you use proper pull-up resistors?");
      }

      this.Device.Write(new byte[] { 0xf0, 0x55 });
      this.Device.Write(new byte[] { 0xfb, 0x00 });
   }

   /// <summary>
   /// Reads all data from the nunchuk
   /// </summary>
   public void Read()
   {
      byte[] WaitWriteBuffer = { 0 };
      I2cTransferResult result;

      result = Device.WritePartial(WaitWriteBuffer);
      if (result.Status != I2cTransferStatus.FullTransfer)
      {
         throw new ApplicationException("Something went wrong reading the Nunchuk. Did you use proper pull-up resistors?");
      }

      byte[] ReadBuffer = new byte[6];
      result = Device.ReadPartial(ReadBuffer);
      if (result.Status != I2cTransferStatus.FullTransfer)
      {
         throw new ApplicationException("Something went wrong reading the Nunchuk. Did you use proper pull-up resistors?");
      }

      // Parses data according to http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Nunchuck#Data_Format

      // Analog stick
      this.AnalogStickX = ReadBuffer[0];
      this.AnalogStickY = ReadBuffer[1];

      // Accelerometer
      ushort AX = (ushort)(ReadBuffer[2] << 2);
      ushort AY = (ushort)(ReadBuffer[3] << 2);
      ushort AZ = (ushort)(ReadBuffer[4] << 2);
      AZ += (ushort)((ReadBuffer[5] & 0xc0) >> 6); // 0xc0 = 11000000
      AY += (ushort)((ReadBuffer[5] & 0x30) >> 4); // 0x30 = 00110000
      AX += (ushort)((ReadBuffer[5] & 0x0c) >> 2); // 0x0c = 00001100
      this.AcceleroMeterX = AX;
      this.AcceleroMeterY = AY;
      this.AcceleroMeterZ = AZ;

      // Buttons
      ButtonC = (ReadBuffer[5] & 0x02) != 0x02;    // 0x02 = 00000010
      ButtonZ = (ReadBuffer[5] & 0x01) != 0x01;    // 0x01 = 00000001
}

The nanoFramework code polls for the joystick position and accelerometer values every 100mSec

public class Program
{
   public static void Main()
   {
      Debug.WriteLine("devMobile.Longboard.WiiNunchuckTest starting");
      Debug.WriteLine(I2cDevice.GetDeviceSelector());

      try
      {
         WiiNunchuk nunchuk = new WiiNunchuk("I2C1");

         while (true)
         {
            nunchuk.Read();

            Debug.WriteLine($"JoyX: {nunchuk.AnalogStickX} JoyY:{nunchuk.AnalogStickY} AX:{nunchuk.AcceleroMeterX} AY:{nunchuk.AcceleroMeterY} AZ:{nunchuk.AcceleroMeterZ} BtnC:{nunchuk.ButtonC} BtnZ:{nunchuk.ButtonZ}");

            Thread.Sleep(100);
         }
      }
      catch (Exception ex)
      {
         Debug.WriteLine(ex.Message);
      }
   }
}

The setup to use for the I2C port was determined by looking at the board.h and target_windows_devices_I2C_config.cpp file

//
// Copyright (c) 2018 The nanoFramework project contributors
// See LICENSE file in the project root for full license information.
//

#include <win_dev_i2c_native_target.h>

//////////
// I2C1 //
//////////

// pin configuration for I2C1
// port for SCL pin is: GPIOB
// port for SDA pin is: GPIOB
// SCL pin: is GPIOB_6
// SDA pin: is GPIOB_7
// GPIO alternate pin function is 4 (see alternate function mapping table in device datasheet)
I2C_CONFIG_PINS(1, GPIOB, GPIOB, 6, 7, 4)

Then checking this against the Netduino 3 Wifi schematic.

This image has an empty alt attribute; its file name is netduinoschematic-1.jpg

After some experimentation with how to detect if an I2C read or write had failed the debugging console output began displaying reasonable value

The thread '<No Name>' (0x2) has exited with code 0 (0x0).
devMobile.Longboard.WiiNunchuckTest starting
I2C1
JoyX: 128 JoyY:128 AX:520 AY:508 AZ:708 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:520 AY:504 AZ:716 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:524 AY:508 AZ:716 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:524 AY:536 AZ:708 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:516 AY:528 AZ:724 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:492 AY:524 AZ:720 BtnC:True BtnZ:False
JoyX: 128 JoyY:128 AX:508 AY:528 AZ:700 BtnC:True BtnZ:False
JoyX: 128 JoyY:128 AX:504 AY:532 AZ:716 BtnC:True BtnZ:False
JoyX: 128 JoyY:128 AX:512 AY:532 AZ:724 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:516 AY:532 AZ:712 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:520 AY:532 AZ:708 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:524 AY:532 AZ:708 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:480 AY:504 AZ:688 BtnC:True BtnZ:True
JoyX: 128 JoyY:128 AX:480 AY:520 AZ:728 BtnC:False BtnZ:True
JoyX: 128 JoyY:128 AX:512 AY:520 AZ:704 BtnC:False BtnZ:True
JoyX: 128 JoyY:128 AX:512 AY:548 AZ:708 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:504 AY:516 AZ:728 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:548 AY:536 AZ:704 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:500 AY:528 AZ:728 BtnC:True BtnZ:False
JoyX: 128 JoyY:128 AX:496 AY:524 AZ:716 BtnC:True BtnZ:False
JoyX: 128 JoyY:128 AX:528 AY:536 AZ:696 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:540 AY:540 AZ:720 BtnC:False BtnZ:False
JoyX: 128 JoyY:128 AX:500 AY:520 AZ:684 BtnC:False BtnZ:False
JoyX: 128 JoyY:0 AX:520 AY:508 AZ:696 BtnC:False BtnZ:False
JoyX: 29 JoyY:0 AX:488 AY:576 AZ:716 BtnC:False BtnZ:False
JoyX: 0 JoyY:128 AX:532 AY:540 AZ:700 BtnC:False BtnZ:False
JoyX: 0 JoyY:128 AX:492 AY:512 AZ:708 BtnC:False BtnZ:False
JoyX: 0 JoyY:128 AX:492 AY:516 AZ:708 BtnC:False BtnZ:False
JoyX: 0 JoyY:128 AX:504 AY:512 AZ:708 BtnC:False BtnZ:False
JoyX: 27 JoyY:128 AX:508 AY:520 AZ:700 BtnC:False BtnZ:False
JoyX: 106 JoyY:128 AX:504 AY:516 AZ:700 BtnC:False BtnZ:False
JoyX: 0 JoyY:128 AX:496 AY:520 AZ:700 BtnC:False BtnZ:False
JoyX: 0 JoyY:128 AX:512 AY:532 AZ:716 BtnC:False BtnZ:False
JoyX: 0 JoyY:128 AX:500 AY:516 AZ:708 BtnC:False BtnZ:False
JoyX: 85 JoyY:113 AX:500 AY:536 AZ:720 BtnC:False BtnZ:False
JoyX: 128 JoyY:110 AX:512 AY:532 AZ:712 BtnC:False BtnZ:False
JoyX: 128 JoyY:90 AX:516 AY:528 AZ:716 BtnC:False BtnZ:False
JoyX: 128 JoyY:43 AX:508 AY:468 AZ:660 BtnC:False BtnZ:False
JoyX: 128 JoyY:0 AX:508 AY:532 AZ:712 BtnC:False BtnZ:False
JoyX: 128 JoyY:0 AX:496 AY:524 AZ:716 BtnC:False BtnZ:False

The next test rig will be getting Pulse Width Modulation(PWM) working.

The Things Network Client Part1

Basic connectivity

Over the last few months I have been using the community version of The Things Network(TTN) to test my LoRaWAN RakWireless RAK811 EVB based nanoFramework and TinyCLR clients.

As I was manually configuring TTN clients references to an application programming interface(API) caught my attention. In my day job I use tools from SmartBear and RicoSuter to generate .Net Core clients (for APSP.NET Core Web APIs I have build) from their OpenAPI descriptions.

The first step was to download the API swagger from The Things Network Github repository.

Things Network Github repository

I then used nSwagStudio to generate a C# client from a local copy of the API swagger (in the future I will use download the swagger and use the command line tools).

nSwag User Interface

At this point I had a basic client for the TTN network stack API which lacked support for the TTN security model etc. After looking at the TTN API documentation I figured out I need to add a header which contained an API Key from the TTN application configuration.

namespace TheThingsNetwork.API
{
	public partial class EndDeviceRegistryClient
	{
		public string ApiKey { set; get; }

		partial void PrepareRequest(System.Net.Http.HttpClient client, System.Net.Http.HttpRequestMessage request, string url)
		{
			if (!client.DefaultRequestHeaders.Contains("Authorization"))
			{
				client.DefaultRequestHeaders.Add("Authorization", $"Bearer {ApiKey}");
			}
		}
	}
}

In the TTN console on the overview page for my application I created an Access Key.

I then added some attributes to one of my devices so I had some addition device configuration data to display(I figured these could be useful for Azure IoT Hub configuration parameters etc. more about this later..)

Basic Device configuration in TTN Enterprise

I built a nasty console application which displayed some basic device configuration information to confirm I could authenticate and enumerate.

//---------------------------------------------------------------------------------
// Copyright (c) August 2020, devMobile Software
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SECURITY_ANONYMISE
//---------------------------------------------------------------------------------
namespace TheThingsNetwork.EndDeviceClient
{
	using System;
	using System.Collections.Generic;
	using System.Net.Http;
	using TheThingsNetwork.API;

	class Program
	{
		static void Main(string[] args)
		{
			Console.WriteLine("TheThingsNetwork.EndDeviceClient starting");

			if (args.Length != 3)
			{
				Console.WriteLine("EndDeviceClient <baseURL> <applicationId> <apiKey>");
				Console.WriteLine("Press <enter> to exit");
				Console.ReadLine();
				return;
			}
			string baseUrl = args[0];
#if !SECURITY_ANONYMISE
			Console.WriteLine($"baseURL: {baseUrl}");
#endif
			string applicationId = args[1];
#if !SECURITY_ANONYMISE
			Console.WriteLine($"applicationId: {applicationId}");
#endif
			string apiKey = args[2];
#if !SECURITY_ANONYMISE
			Console.WriteLine($"apiKey: {apiKey}");
			Console.WriteLine();
#endif

			using (HttpClient httpClient = new HttpClient())
			{
				EndDeviceRegistryClient endDeviceRegistryClient = new EndDeviceRegistryClient(baseUrl, httpClient);
				endDeviceRegistryClient.ApiKey = apiKey;

				try
				{
					V3EndDevices endDevices = endDeviceRegistryClient.ListAsync(applicationId).GetAwaiter().GetResult();

					foreach (V3EndDevice v3EndDevice in endDevices.End_devices)
					{
#if SECURITY_ANONYMISE
						v3EndDevice.Ids.Dev_eui[7] = 0x0;
						v3EndDevice.Ids.Dev_eui[8] = 0x0;
						v3EndDevice.Ids.Dev_eui[9] = 0x0;
						v3EndDevice.Ids.Dev_eui[10] = 0x0;
						v3EndDevice.Ids.Dev_eui[11] = 0x0;
#endif
						Console.WriteLine($"Device ID:{v3EndDevice.Ids.Device_id} DevEUI:{Convert.ToBase64String(v3EndDevice.Ids.Dev_eui)}");
						Console.WriteLine($"   CreatedAt: {v3EndDevice.Created_at:dd-MM-yy HH:mm:ss} UpdatedAt: {v3EndDevice.Updated_at:dd-MM-yy HH:mm:ss}");

						string[] fieldMaskPaths = { "name", "description", "attributes" };

						var endDevice = endDeviceRegistryClient.GetAsync(applicationId, v3EndDevice.Ids.Device_id, field_mask_paths: fieldMaskPaths).GetAwaiter().GetResult();

						Console.WriteLine($"   Name: {endDevice.Name}");
						Console.WriteLine($"   Description: {endDevice.Description}");
						if (endDevice.Attributes != null)
						{
							foreach (KeyValuePair<string, string> attribute in endDevice.Attributes)
							{
								Console.WriteLine($"      Key: {attribute.Key} Name: {attribute.Value}");
							}
						}
						Console.WriteLine();
					}
				}
				catch (Exception ex)
				{
					Console.WriteLine(ex.Message);
				}

				Console.WriteLine("Press <enter> to exit");
				Console.ReadLine();
			}
		}
	}
}

I added some code so I could anonymise the displayed configuration so I could take screen grabs without revealing any sensitive information.

TTN API Client V1

Initially I struggled with versioning issues as the TTN community network is running V2 and the github repository was for V3. I approached TTN and they gave me access to a “limited” account on the enterprise network.

I also struggled with the number of blank fields in responses and spent some time learning GO (the programming language TTN is built with) to figure out how to use fieldMaskPaths etc.

string[] fieldMaskPaths = { "name", "description", "attributes" };

V3EndDevice endDevice = endDeviceRegistryClient.GetAsync(applicationId, v3EndDevice.Ids.Device_id, field_mask_paths: fieldMaskPaths).GetAwaiter().GetResult();

Overall things went pretty well but I expect to basic GO programing skills one this project is finished.

As hinted at earlier in this post the end goal of this project is to build an Azure IoT hub integration.

nanoFramework nRF24L01 library Part2

After sorting out Serial Peripheral Interface(SPI) connectivity the next step porting my GHI Electronics TinyCLR V2 library to the nanoFramework was rewriting the initialisation code. Overall changes were minimal as the nanoFramework similar methods to the TinyCLR V2 ones.

The Tiny CLR SPI and interrupt port configuration (note the slightly different interrupt port configuration)

if (gpio == null)
{
   Debug.WriteLine("GPIO Initialization failed.");
}
else
{
   _cePin = gpio.OpenPin(chipEnablePin);
   _cePin.SetDriveMode(GpioPinDriveMode.Output);
   _cePin.Write(GpioPinValue.Low);

   _irqPin = gpio.OpenPin((byte)interruptPin);
   _irqPin.SetDriveMode(GpioPinDriveMode.InputPullUp);
   _irqPin.Write(GpioPinValue.High);
   _irqPin.ValueChanged += _irqPin_ValueChanged;
}

try
{
   var settings = new SpiConnectionSettings()
   {
      ChipSelectType = SpiChipSelectType.Gpio,
      ChipSelectLine = gpio.OpenPin(chipSelectPin),
      Mode = SpiMode.Mode0,
      ClockFrequency = clockFrequency,
      ChipSelectActiveState = false,
   };

   SpiController controller = SpiController.FromName(spiPortName);
   _spiPort = controller.GetDevice(settings);
}
catch (Exception ex)
{
   Debug.WriteLine("SPI Initialization failed. Exception: " + ex.Message);
   return;
}

The nanoFramework SPI and interrupt port configuration (note the slightly different SPI port configuration)

public void Initialize(string spiPortName, int chipEnablePin, int chipSelectPin, int interruptPin, int clockFrequency = 2000000)
{
   var gpio = GpioController.GetDefault();

   if (gpio == null)
   {
      Debug.WriteLine("GPIO Initialization failed.");
   }
   else
   {
      _cePin = gpio.OpenPin(chipEnablePin);
      _cePin.SetDriveMode(GpioPinDriveMode.Output);
      _cePin.Write(GpioPinValue.Low);

      _irqPin = gpio.OpenPin((byte)interruptPin);
      _irqPin.SetDriveMode(GpioPinDriveMode.InputPullUp);
      _irqPin.ValueChanged += irqPin_ValueChanged;
   }

   try
   {
      var settings = new SpiConnectionSettings(chipSelectPin)
      {
         ClockFrequency = clockFrequency,
         Mode = SpiMode.Mode0,
         SharingMode = SpiSharingMode.Shared,
      };

      _spiPort = SpiDevice.FromId(spiPortName, settings);
   }
   catch (Exception ex)
   {
      Debug.WriteLine("SPI Initialization failed. Exception: " + ex.Message);
   return;
   }

The error handling of the initialise method is broken. If the some of the GPIO or SPI port configuration fails a message is displayed in the Debug output but the caller is not notified.

I’m using a Netduino 3 Wifi as the SPI port configuration means I can use a standard Arduino shield to connect up the NRF24L01 wireless module without any jumpers

Netduino 3 Wifi and embedded coolness shield

I have applied the PowerLevel fix from the TinyCLR and Meadow libraries but worry that there maybe other issues.

The thread '<No Name>' (0x2) has exited with code 0 (0x0).
Address: Dev01
PowerLevel: 2
IsAutoAcknowledge: True
Channel: 15
DataRate: 2
IsDynamicAcknowledge: False
IsDynamicPayload: True
IsEnabled: False
Frequency: 2415
IsInitialized: True
IsPowered: True
00:00:15-TX 9 byte message hello 255
Data Sent!
00:00:15-TX Succeeded!

Based on my experiences porting the library to three similar platforms and debugging it on two others I’m considering writing my own compile-time platform portable library.

nanoFramework nRF24L01 library Part1

After porting then debugging Windows 10 IoT Core, .NetMF, Wilderness Labs Meadow and GHI Electronics TinyCLR nRF24L01P libraries I figured yet another port, this time to a nanoFramework powered devices should be low risk.

My initial test rig uses a Netduino 3 Wifi and an Embedded Coolness nRF24 shield as I didn’t need to use jumper wires.

//---------------------------------------------------------------------------------
// Copyright (c) July 2020, devMobile Software
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//---------------------------------------------------------------------------------
#define NETDUINO3_WIFI   // nanoff --target NETDUINO3_WIFI --update

namespace devMobile.IoT.nRf24L01.ModuleSPI
{
   using System;
   using System.Threading;
   using System.Diagnostics;
   using System.Text;
   using Windows.Devices.Gpio;
   using Windows.Devices.Spi;

   public class Program
   {
      const byte SETUP_AW = 0x03;
      const byte RF_CH = 0x05;
      const byte RX_ADDR_P0 = 0x0A;
      const byte R_REGISTER = 0b00000000;
      const byte W_REGISTER = 0b00100000;
      const string P0_Address = "ZYXWV";

#if NETDUINO3_WIFI
      private const string SpiBusId = "SPI2";
#endif

      public static void Main()
      {
#if NETDUINO3_WIFI
         // Arduino D7->PD7
         int chipSelectPinNumber = PinNumber('A', 1);
#endif
         Debug.WriteLine("devMobile.IoT.nRf24L01.ModuleSPI starting");

         Debug.WriteLine(Windows.Devices.Spi.SpiDevice.GetDeviceSelector());

         try
         {
            GpioController gpioController = GpioController.GetDefault();

            var settings = new SpiConnectionSettings(chipSelectPinNumber)
            {
               ClockFrequency = 2000000,
               Mode = SpiMode.Mode0,
               SharingMode = SpiSharingMode.Shared,
            };

            using (SpiDevice device = SpiDevice.FromId(SpiBusId, settings))
            {
               Debug.WriteLine("nrf24L01Device Device...");
               if (device == null)
               {
                  Debug.WriteLine("nrf24L01Device == null");
               }

               Thread.Sleep(100);

               Debug.WriteLine("ConfigureSpiPort Done...");
               Debug.WriteLine("");

               Thread.Sleep(500);
               try
               {
                  // Read the Address width
                  Debug.WriteLine("Read address width");
                  byte[] txBuffer1 = new byte[] { SETUP_AW | R_REGISTER, 0x0 };
                  byte[] rxBuffer1 = new byte[txBuffer1.Length];

                  Debug.WriteLine(" nrf24L01Device.TransferFullDuplex...SETUP_AW");
                  Debug.WriteLine(" txBuffer:" + BitConverter.ToString(txBuffer1));
                  device.TransferFullDuplex(txBuffer1, rxBuffer1);
                  Debug.WriteLine(" rxBuffer:" + BitConverter.ToString(rxBuffer1));

                  // Extract then adjust the address width
                  byte addressWidthValue = rxBuffer1[1];
                  addressWidthValue &= 0b00000011;
                  addressWidthValue += 2;
                  Debug.WriteLine($"Address width 0x{SETUP_AW:x2} - Value 0X{rxBuffer1[1]:x2} Value adjusted {addressWidthValue}");
                  Debug.WriteLine("");

                  // Write Pipe0 Receive address
                  Debug.WriteLine($"Write Pipe0 Receive Address {P0_Address}");
                  byte[] txBuffer2 = new byte[addressWidthValue + 1];
                  byte[] rxBuffer2 = new byte[txBuffer2.Length];
                  txBuffer2[0] = RX_ADDR_P0 | W_REGISTER;
                  Array.Copy(Encoding.UTF8.GetBytes(P0_Address), 0, txBuffer2, 1, addressWidthValue);

                  Debug.WriteLine(" nrf24L01Device.Write...RX_ADDR_P0");
                  Debug.WriteLine(" txBuffer:" + BitConverter.ToString(txBuffer2));
                  device.TransferFullDuplex(txBuffer2, rxBuffer2);
                  Debug.WriteLine("");

                  // Read Pipe0 Receive address
                  Debug.WriteLine("Read Pipe0 Receive address");
                  byte[] txBuffer3 = new byte[addressWidthValue + 1];
                  txBuffer3[0] = RX_ADDR_P0 | R_REGISTER;
                  byte[] rxBuffer3 = new byte[txBuffer3.Length];

                  Debug.WriteLine(" nrf24L01Device.TransferFullDuplex...RX_ADDR_P0");
                  Debug.WriteLine(" txBuffer:" + BitConverter.ToString(txBuffer3));
                  device.TransferFullDuplex(txBuffer3, rxBuffer3);
                  Debug.WriteLine(" rxBuffer:" + BitConverter.ToString(rxBuffer3));
                  Debug.WriteLine($"Address 0x{RX_ADDR_P0:x2} Address {UTF8Encoding.UTF8.GetString(rxBuffer3, 1, addressWidthValue)}");
                  Debug.WriteLine("");

                  // Read the RF Channel
                  Debug.WriteLine("RF Channel read 1");
                  byte[] txBuffer4 = new byte[] { RF_CH | R_REGISTER, 0x0 };
                  byte[] rxBuffer4 = new byte[txBuffer4.Length];

                  Debug.WriteLine(" nrf24L01Device.TransferFullDuplex...RF_CH");
                  Debug.WriteLine(" txBuffer:" + BitConverter.ToString(txBuffer4));
                  device.TransferFullDuplex(txBuffer4, rxBuffer4);
                  Debug.WriteLine(" rxBuffer:" + BitConverter.ToString(rxBuffer4));

                  byte rfChannel1 = rxBuffer4[1];
                  Debug.WriteLine($"RF Channel 1 0x{RF_CH:x2} - Value 0X{rxBuffer4[1]:x2} - Value adjusted {rfChannel1+2400}");
                  Debug.WriteLine("");

                  // Write the RF Channel
                  Debug.WriteLine("RF Channel write");
                  byte[] txBuffer5 = new byte[] { RF_CH | W_REGISTER, rfChannel1+=1};
                  byte[] rxBuffer5 = new byte[txBuffer5.Length];

                  Debug.WriteLine(" nrf24L01Device.Write...RF_CH");
                  Debug.WriteLine(" txBuffer:" + BitConverter.ToString(txBuffer5));
                  //device.Write(txBuffer5);
                  device.TransferFullDuplex(txBuffer5, rxBuffer5);
                  Debug.WriteLine("");

                  // Read the RF Channel
                  Debug.WriteLine("RF Channel read 2");
                  byte[] txBuffer6 = new byte[] { RF_CH | R_REGISTER, 0x0 };
                  byte[] rxBuffer6 = new byte[txBuffer6.Length];

                  Debug.WriteLine(" nrf24L01Device.TransferFullDuplex...RF_CH");
                  Debug.WriteLine(" txBuffer:" + BitConverter.ToString(txBuffer6));
                  device.TransferFullDuplex(txBuffer6, rxBuffer6);
                  Debug.WriteLine(" rxBuffer:" + BitConverter.ToString(rxBuffer6));

                  byte rfChannel2 = rxBuffer6[1];
                  Debug.WriteLine($"RF Channel 2 0x{RF_CH:x2} - Value 0X{rxBuffer6[1]:x2} - Value adjusted {rfChannel2+2400}");
                  Debug.WriteLine("");
               }
               catch (Exception ex)
               {
                  Debug.WriteLine("Configure Port0 " + ex.Message);
               }
            }
         }
         catch (Exception ex)
         {
            Debug.WriteLine(ex.Message);
         }
      }

#if NETDUINO3_WIFI
      static int PinNumber(char port, byte pin)
      {
         if (port < 'A' || port > 'J')
            throw new ArgumentException();

         return ((port - 'A') * 16) + pin;
      }
#endif
   }
}

After bit of tinkering with SPI configuration options and checking device.Write vs. device.TransferFullDuplex usage. I can reliably read and write my nRF24L01 device’s receive port address and channel configuration.

devMobile.IoT.nRf24L01.ModuleSPI starting
SPI1,SPI2,SPI3,SPI4
nrf24L01Device Device...
ConfigureSpiPort Done...

Read address width
 nrf24L01Device.TransferFullDuplex...SETUP_AW
 txBuffer:03-00
 rxBuffer:0E-03
Address width 0x03 - Value 0X03 Value adjusted 5

Write Pipe0 Receive Address ZYXWV
 nrf24L01Device.Write...RX_ADDR_P0
 txBuffer:2A-5A-59-58-57-56

Read Pipe0 Receive address
 nrf24L01Device.TransferFullDuplex...RX_ADDR_P0
 txBuffer:0A-00-00-00-00-00
 rxBuffer:0E-5A-59-58-57-56
Address 0x0A Address ZYXWV

RF Channel read 1
 nrf24L01Device.TransferFullDuplex...RF_CH
 txBuffer:05-00
 rxBuffer:0E-02
RF Channel 1 0x05 - Value 0X02 - Value adjusted 2402

RF Channel write
 nrf24L01Device.Write...RF_CH
 txBuffer:25-03

RF Channel read 2
 nrf24L01Device.TransferFullDuplex...RF_CH
 txBuffer:05-00
 rxBuffer:0E-03
RF Channel 2 0x05 - Value 0X03 - Value adjusted 2403

The thread '<No Name>' (0x1) has exited with code 0 (0x0).
Done.

Next step is to port my TinyCLR nRF24L01 library which is based on the Techfoonina Windows 10 IoT Core port which is based on .NetMF library by Gralin.

nRF24L01-TinyCLR V2 RC2 on Github

The source code of RC2 of my port GHI Electronics TinyCLR-0SV2RC1 nRF24L01 library is live on GitHub. The sample application now supports Fezduino (with embeddedcoolness.com or other Arduino shield), Fezportal and the SC2010 Dev board (with mikroe nrf24C Click, mikroe nRF24S Click or mikroenRF24T Click) .

Fezduino with Embedded Coolness shield
Fezportal with Mikroe nRF24 C Click
SC20100 Dev board

The application has gained four compile time configuration options

  • TINYCLR_V2_SC20100DEV_MIKROBUS_1
  • TINYCLR_V2_SC20100DEV_MIKROBUS_2
  • TINYCLR_V2_FEZDUINO
  • TINYCLR_V2_FEZPORTAL

These options configure the chip enable, chip selected and interrupt pins.

//---------------------------------------------------------------------------------
// Copyright (c) May 2020, devMobile Software
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Need one of TINYCLR_V2_SC20100DEV_MIKROBUS_1/TINYCLR_V2_SC20100DEV_MIKROBUS_2/TINYCLR_V2_FEZDUINO/TINYCLR_V2_FEZPORTAL defined
//---------------------------------------------------------------------------------
namespace devMobile.IoT.FieldGateway.TinyCLRV2nRF24Client
{
   using System;
   using System.Diagnostics;
   using System.Text;
   using System.Threading;

   using GHIElectronics.TinyCLR.Pins;

   using Radios.RF24;

   class Program
   {
      private const string BaseStationAddress = "Base1";
      private const string DeviceAddress = "Dev01";

      static void Main()
      {
         RF24 radio = new RF24();
         byte messageCount = System.Byte.MaxValue;

         try
         {
            radio.OnDataReceived += Radio_OnDataReceived;
            radio.OnTransmitFailed += Radio_OnTransmitFailed;
            radio.OnTransmitSuccess += Radio_OnTransmitSuccess;

#if TINYCLR_V2_SC20100DEV_MIKROBUS_1
            radio.Initialize(SC20100.SpiBus.Spi3, SC20100.GpioPin.PD4, SC20100.GpioPin.PD3, SC20100.GpioPin.PC5);
#endif
#if TINYCLR_V2_SC20100DEV_MIKROBUS_2
            radio.Initialize(SC20100.SpiBus.Spi3, SC20100.GpioPin.PD15, SC20100.GpioPin.PD14, SC20100.GpioPin.PA8);
#endif
#if TINYCLR_V2_FEZDUINO
            radio.Initialize(SC20100.SpiBus.Spi6, SC20100.GpioPin.PE11, SC20100.GpioPin.PC4, SC20100.GpioPin.PA1);
#endif
#if TINYCLR_V2_FEZPORTAL
            radio.Initialize(SC20100.SpiBus.Spi3, SC20100.GpioPin.PD4, SC20100.GpioPin.PC13, SC20100.GpioPin.PC2);
#endif
            radio.Address = Encoding.UTF8.GetBytes(DeviceAddress);

            radio.Channel = 15;
            radio.PowerLevel = PowerLevel.Minimum;
            radio.DataRate = DataRate.DR250Kbps;
            radio.IsEnabled = true;

            radio.IsAutoAcknowledge = true;
            radio.IsDyanmicAcknowledge = false;
            radio.IsDynamicPayload = true;

            Debug.WriteLine($"Address: {Encoding.UTF8.GetString(radio.Address)}");
            Debug.WriteLine($"PowerLevel: {radio.PowerLevel}");
            Debug.WriteLine($"IsAutoAcknowledge: {radio.IsAutoAcknowledge}");
            Debug.WriteLine($"Channel: {radio.Channel}");
            Debug.WriteLine($"DataRate: {radio.DataRate}");
            Debug.WriteLine($"IsDynamicAcknowledge: {radio.IsDyanmicAcknowledge}");
            Debug.WriteLine($"IsDynamicPayload: {radio.IsDynamicPayload}");
            Debug.WriteLine($"IsEnabled: {radio.IsEnabled}");
            Debug.WriteLine($"Frequency: {radio.Frequency}");
            Debug.WriteLine($"IsInitialized: {radio.IsInitialized}");
            Debug.WriteLine($"IsPowered: {radio.IsPowered}");

            while (true)
            {
               string payload = $"hello {messageCount}";
               messageCount -= 1;

               Debug.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-TX {payload.Length} byte message {payload}");
               radio.SendTo(Encoding.UTF8.GetBytes(BaseStationAddress), Encoding.UTF8.GetBytes(payload));

               Thread.Sleep(30000);
            }
         }
         catch (Exception ex)
         {
            Debug.WriteLine(ex.Message);
         }
      }

      private static void Radio_OnDataReceived(byte[] data)
      {
         // display as hex
         Debug.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-RX Hex Length {data.Length} Payload {BitConverter.ToString(data)}");

         // Display as Unicode
         string unicodeText = Encoding.UTF8.GetString(data);
         Debug.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-RX Unicode Length {unicodeText.Length} Unicode text {unicodeText}");
      }

      private static void Radio_OnTransmitSuccess()
      {
         Debug.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-TX Succeeded!");
      }

      private static void Radio_OnTransmitFailed()
      {
         Debug.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-TX failed!");
      }
   }
}

RFM9X.TinyCLR V2 RC2 on Github

The source code of RC2 of my GHI Electronics TinyCLR-0SV2RC1 RFM9X/SX127X library is live on GitHub. The sample application now supports Fezduino(dragino_LoRa shield for Arduino + others), Fezportal and the SC2010 Dev board (with CascoLogix LoRa Click) . I will add FezFeather and Fezstick support soon.

//---------------------------------------------------------------------------------
// Copyright (c) March/April 2020, devMobile Software
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Need one of TINYCLR_V2_SC20100DEV_MIKROBUS_1/TINYCLR_V2_SC20100DEV_MIKROBUS_2/TINYCLR_V2_FEZDUINO/TINYCLR_V2_FEZPORTAL defined
//---------------------------------------------------------------------------------
namespace devMobile.IoT.Rfm9x.LoRaDeviceClient
{
	using System;
	using System.Diagnostics;
	using System.Text;
	using System.Threading;

	using GHIElectronics.TinyCLR.Pins;

	using devMobile.IoT.Rfm9x;

	class Program
   {
      static void Main()
      {
#if TINYCLR_V2_SC20100DEV_MIKROBUS_1 || TINYCLR_V2_SC20100DEV_MIKROBUS_2
			const string DeviceName = "SC20100DEVLoRa";
#endif
#if TINYCLR_V2_FEZDUINO
			const string DeviceName = "FezduinoLoRa";
#endif
#if TINYCLR_V2_FEZPORTAL
			const string DeviceName = "FezportalLoRa";
#endif
#if ADDRESSED_MESSAGES_PAYLOAD
			const string HostName = "LoRaIoT1";
#endif
			const double Frequency = 915000000.0;
			byte MessageCount = System.Byte.MaxValue;
#if TINYCLR_V2_SC20100DEV_MIKROBUS_1
         Rfm9XDevice rfm9XDevice = new Rfm9XDevice(SC20100.SpiBus.Spi3, SC20100.GpioPin.PD3, SC20100.GpioPin.PD4, SC20100.GpioPin.PC5);
#endif
#if TINYCLR_V2_SC20100DEV_MIKROBUS_2
			Rfm9XDevice rfm9XDevice = new Rfm9XDevice(SC20100.SpiBus.Spi3, SC20100.GpioPin.PD14, SC20100.GpioPin.PD15, SC20100.GpioPin.PA8);
#endif
#if TINYCLR_V2_FEZDUINO
			Rfm9XDevice rfm9XDevice = new Rfm9XDevice(SC20100.SpiBus.Spi6, SC20100.GpioPin.PB1, SC20100.GpioPin.PA15, SC20100.GpioPin.PA1);
#endif
#if TINYCLR_V2_FEZPORTAL
         Rfm9XDevice rfm9XDevice = new Rfm9XDevice(SC20100.SpiBus.Spi3, SC20100.GpioPin.PC13, SC20100.GpioPin.PD4,SC20100.GpioPin.PC2);
#endif

			rfm9XDevice.Initialise(Frequency, paBoost: true, rxPayloadCrcOn: true);
#if DEBUG
			rfm9XDevice.RegisterDump();
#endif

			rfm9XDevice.OnReceive += Rfm9XDevice_OnReceive;
#if ADDRESSED_MESSAGES_PAYLOAD
			rfm9XDevice.Receive(UTF8Encoding.UTF8.GetBytes(DeviceName));
#else
			rfm9XDevice.Receive();
#endif
			rfm9XDevice.OnTransmit += Rfm9XDevice_OnTransmit;

			Thread.Sleep(10000);

			while (true)
			{
				string messageText = string.Format("Hello from {0} ! {1}", DeviceName, MessageCount);
				MessageCount -= 1;

				byte[] messageBytes = UTF8Encoding.UTF8.GetBytes(messageText);
				Debug.WriteLine($"{DateTime.Now:HH:mm:ss}-TX {messageBytes.Length} byte message {messageText}");
#if ADDRESSED_MESSAGES_PAYLOAD
				rfm9XDevice.Send(UTF8Encoding.UTF8.GetBytes(HostName), messageBytes);
#else
				rfm9XDevice.Send(messageBytes);
#endif
				Thread.Sleep(10000);
			}
		}

		private static void Rfm9XDevice_OnReceive(object sender, Rfm9XDevice.OnDataReceivedEventArgs e)
		{
			try
			{
				string messageText = UTF8Encoding.UTF8.GetString(e.Data);

#if ADDRESSED_MESSAGES_PAYLOAD
				string addressText = UTF8Encoding.UTF8.GetString(e.Address);

				Debug.WriteLine($@"{DateTime.Now:HH:mm:ss}-RX From {addressText} PacketSnr {e.PacketSnr} Packet RSSI {e.PacketRssi}dBm RSSI {e.Rssi}dBm = {e.Data.Length} byte message ""{messageText}""");
#else
				Debug.WriteLine($@"{DateTime.Now:HH:mm:ss}-RX PacketSnr {e.PacketSnr} Packet RSSI {e.PacketRssi}dBm RSSI {e.Rssi}dBm = {e.Data.Length} byte message ""{messageText}""");
#endif
			}
			catch (Exception ex)
			{
				Debug.WriteLine(ex.Message);
			}
		}

		private static void Rfm9XDevice_OnTransmit(object sender, Rfm9XDevice.OnDataTransmitedEventArgs e)
		{
			Debug.WriteLine($"{DateTime.Now:HH:mm:ss}-TX Done");
		}
	}
}

The library works but should be treated as late beta.

TinyCLR OS V2 RC1 LoRa library Part4

Interrupts Revisited

In my last post I had two approaches for fixing the issue with transmit interrupts. As I was sorting out the configuration for my Fezportal device and SS20100 Dev board(both sockets) with a Cascologix MikroBus LoRa click I had similar issues with both receive and transmit.

SC20100 Dev Rev A with Cascologix Click in socket1
Fezportal with Cascologix click

I noticed the extra RegIrqFlags 0X58, Receive-Message in the debugging output.

The thread '<No Name>' (0x2) has exited with code 0 (0x0).
Sending 13 bytes message Hello LoRa 1!
RegIrqFlags 0X08
Transmit-Done
Sending 13 bytes message Hello LoRa 2!
RegIrqFlags 0X08
Transmit-Done
RegIrqFlags 0X58
Receive-Message
Received 23 byte message  �LoRaIoT1N3WT 20.5,H 86
Transmit-Done
Sending 13 bytes message Hello LoRa 3!
RegIrqFlags 0X08
Transmit-Done

This was with the modified device write methods so I tried changing the Serial Peripheral Interface(SPI) configuration.

public RegisterManager(string spiPortName,  int chipSelectPin, int clockFrequency = 500000)
{
	GpioPin chipSelectGpio = GpioController.GetDefault().OpenPin(chipSelectPin);

	var settings = new SpiConnectionSettings()
	{
		ChipSelectType = SpiChipSelectType.Gpio,
		ChipSelectLine = chipSelectGpio,
		Mode = SpiMode.Mode0,
		ClockFrequency = clockFrequency,
		ChipSelectActiveState = false,
		ChipSelectHoldTime = new TimeSpan(1),
	};

	SpiController spiController = SpiController.FromName(spiPortName);

	rfm9XLoraModem = spiController.GetDevice(settings);
}

When I added the ChipSelectHoldTime (even the smallest possible one) the code worked as expected.

The thread '' (0x2) has exited with code 0 (0x0).
Sending 13 bytes message Hello LoRa 1!
RegIrqFlags 0X08
Transmit-Done
Sending 13 bytes message Hello LoRa 2!
RegIrqFlags 0X08
Transmit-Done
RegIrqFlags 0X50
Receive-Message
Received 23 byte message �LoRaIoT1N3WT 20.5,H 87
Sending 13 bytes message Hello LoRa 3!
RegIrqFlags 0X08
Transmit-Done
Sending 13 bytes message Hello LoRa 4!
RegIrqFlags 0X08
Transmit-Done

At this point I have run out of ideas so I will release the code this fix.

RAK811LoRaWAN.TinyCLR on Github

The source code of my TinyCLR V2 RAK811 Module library is now available on GitHub. My demonstration application uses a FezDuino and a modified RAK811 LPWAN Evaluation Board(EVB).

FezDuino with EVB plugged into Arduino headers

A sample application which shows how to connect using Over the Air Activation(OTAA) or Activation By Personalisation(ABP) then send and receive byte array/Binary Coded Decimal(BCD) messages .

//---------------------------------------------------------------------------------
// Copyright (c) July 2020, devMobile Software
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// must have one of 
//    TINYCLR_V2_FEZDUINO or
//    PAYLOAD_BCD or PAYLOAD_BYTES defined
//    OTAA or ABP
//
// For confirmed messages define CONFIRMED
//---------------------------------------------------------------------------------
namespace devMobile.IoT.Rak811LoRaWanDeviceClient
{
   using System;
   using System.Threading;
   using System.Diagnostics;

   using GHIElectronics.TinyCLR.Pins;
   using GHIElectronics.TinyCLR.Devices.Uart;

   using devMobile.IoT.LoRaWan;

   public class Program
   {
#if TINYCLR_V2_FEZDUINO
      private const string SerialPortId = SC20100.UartPort.Uart5;
#endif
#if OTAA
      private const string DevEui = "...";
      private const string AppEui = "...";
      private const string AppKey = "...";
#endif
#if ABP
      private const string DevAddress = "...";
      private const string NwksKey = "...";
      private const string AppsKey = "...";
#endif
      private const string Region = "AS923";
      private static readonly TimeSpan JoinTimeOut = new TimeSpan(0, 0, 10);
      private static readonly TimeSpan SendTimeout = new TimeSpan(0, 0, 10);
      private const byte MessagePort = 1;
#if PAYLOAD_BCD
      private const string PayloadBcd = "48656c6c6f204c6f526157414e"; // Hello LoRaWAN in BCD
#endif
#if PAYLOAD_BYTES
      private static readonly byte[] PayloadBytes = { 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x4c, 0x6f, 0x52, 0x61, 0x57, 0x41, 0x4e}; // Hello LoRaWAN in bytes
#endif

      public static void Main()
      {
         Result result;

         Debug.WriteLine("devMobile.IoT.Rak811LoRaWanDeviceClient starting");

         try
         {
            using (Rak811LoRaWanDevice device = new Rak811LoRaWanDevice())
            {
               result = device.Initialise(SerialPortId, 9600, UartParity.None, 8, UartStopBitCount.One);
               if (result != Result.Success)
               {
                  Debug.WriteLine($"Initialise failed {result}");
                  return;
               }

#if CONFIRMED
               device.OnMessageConfirmation += OnMessageConfirmationHandler;
#endif
               device.OnReceiveMessage += OnReceiveMessageHandler;

               Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Region {Region}");
               result = device.Region(Region);
               if (result != Result.Success)
               {
                  Debug.WriteLine($"Region failed {result}");
                  return;
               }

               Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} ADR On");
               result = device.AdrOn();
               if (result != Result.Success)
               {
                  Debug.WriteLine($"ADR on failed {result}");
                  return;
               }

#if CONFIRMED
               Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Confirmed");
               result = device.Confirm(LoRaConfirmType.Confirmed);
               if (result != Result.Success)
               {
                  Debug.WriteLine($"Confirm on failed {result}");
                  return;
               }
#else
               Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Unconfirmed");
               result = device.Confirm(LoRaConfirmType.Unconfirmed);
               if (result != Result.Success)
               {
                  Debug.WriteLine($"Confirm off failed {result}");
                  return;
               }
#endif

#if OTAA
               Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} OTAA");
               result = device.OtaaInitialise(DevEui, AppEui, AppKey);
               if (result != Result.Success)
               {
                  Debug.WriteLine($"OTAA Initialise failed {result}");
                  return;
               }
#endif

#if ABP
               Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} ABP");
               result = device.AbpInitialise(DevAddress, NwksKey, AppsKey);
               if (result != Result.Success)
               {
                  Debug.WriteLine($"ABP Initialise failed {result}");
                  return;
               }
#endif

               //Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Join start Timeout:{JoinTimeOut:hh:mm:ss}");
               result = device.Join(JoinTimeOut);
               if (result != Result.Success)
               {
                  Debug.WriteLine($"Join failed {result}");
                  return;
               }
               Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Join finish");

               while (true)
               {
#if PAYLOAD_BCD
                  Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} port:{MessagePort} payload BCD:{PayloadBcd}");
                  result = device.Send(MessagePort, PayloadBcd, SendTimeout);
#endif
#if PAYLOAD_BYTES
                  Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Send Timeout:{SendTimeout:hh:mm:ss} port:{MessagePort} payload Bytes:{BitConverter.ToString(PayloadBytes)}");
                  result = device.Send(MessagePort, PayloadBytes, SendTimeout);
#endif
                  if (result != Result.Success)
                  {
                     Debug.WriteLine($"Send failed {result}");
                  }

                  // if we sleep module too soon response is missed
                  Thread.Sleep(5000);

                  Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Sleep");
                  result = device.Sleep();
                  if (result != Result.Success)
                  {
                     Debug.WriteLine($"Sleep failed {result}");
                     return;
                  }

                  Thread.Sleep(30000);

                  Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Wakeup");
                  result = device.Wakeup();
                  if (result != Result.Success)
                  {
                     Debug.WriteLine($"Wakeup failed {result}");
                     return;
                  }
               }
            }
         }
         catch (Exception ex)
         {
            Debug.WriteLine(ex.Message);
         }
      }

      static void OnMessageConfirmationHandler(int rssi, int snr)
      {
         Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Send Confirm RSSI:{rssi} SNR:{snr}");
      }

      static void OnReceiveMessageHandler(int port, int rssi, int snr, string payloadBcd)
      {
         byte[] payloadBytes = Rak811LoRaWanDevice.BcdToByes(payloadBcd);

         Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Receive Message RSSI:{rssi} SNR:{snr} Port:{port} Payload:{payloadBcd} PayLoadBytes:{BitConverter.ToString(payloadBytes)}");
      }
   }
}

I noticed (mid July 2020) that when changing from from ABP to OTAA and vice versa I needed to reset the the device “frame counters” in the Things Network console.

TinyCLR OS V2 RC1 RAK811 LoRaWAN library Part2

Nasty OTAA connect

After getting basic connectivity for my RAK811 LPWAN Evaluation Board(EVB) and Fezduino test rig working. I wanted to see if I could get the device connected to The Things Network(TTN) via the RAK7246G LPWAN Developer Gateway on my desk. I had got the EVB configuration sorted with a nanoFramework device so I was confident it should work.

EVB plugged into Fezduino

My Over the Air Activation (OTAA) implementation is very “nasty” I assumed that there would be no timeouts or failures and I only send one BCD message “48656c6c6f204c6f526157414e” which is “hello LoRaWAN”

I configured the RAK811 module for LoRaWAN

// Set the Working mode to LoRaWAN
txByteCount = serialDevice.Write(UTF8Encoding.UTF8.GetBytes("at+set_config=lora:work_mode:0\r\n"));
Debug.WriteLine($"TX: work mode {txByteCount} bytes");
Thread.Sleep(500);

// Read the response
rxByteCount = serialDevice.BytesToRead;
if (rxByteCount > 0)
{
   byte[] rxBuffer = new byte[rxByteCount];
   serialDevice.Read(rxBuffer);
   Debug.WriteLine($"RX :{UTF8Encoding.UTF8.GetString(rxBuffer)}");
}
...

Then just sequentially step through the necessary configuration to join the TTN network with a suitable delay after each command is sent.

// Set the Region to AS923
txByteCount = serialDevice.Write(UTF8Encoding.UTF8.GetBytes("at+set_config=lora:region:AS923\r\n"));
Debug.WriteLine($"TX: region {txByteCount} bytes");
Thread.Sleep(500);

// Read the response
rxByteCount = serialDevice.BytesToRead;
if (rxByteCount > 0)
{
   byte[] rxBuffer = new byte[rxByteCount];
   serialDevice.Read(rxBuffer);
   Debug.WriteLine($"RX :{UTF8Encoding.UTF8.GetString(rxBuffer)}");
}

// Set the JoinMode
txByteCount = serialDevice.Write(UTF8Encoding.UTF8.GetBytes("at+set_config=lora:join_mode:0\r\n"));
Debug.WriteLine($"TX: join_mode {txByteCount} bytes");
Thread.Sleep(500);

// Read the response
rxByteCount = serialDevice.BytesToRead;
if (rxByteCount > 0)
{
   byte[] rxBuffer = new byte[rxByteCount];
   serialDevice.Read(rxBuffer);
   Debug.WriteLine($"RX :{UTF8Encoding.UTF8.GetString(rxBuffer)}");
}

// OTAA set the devEUI
txByteCount = serialDevice.Write(UTF8Encoding.UTF8.GetBytes($"at+set_config=lora:dev_eui:{DevEui}\r\n"));
Debug.WriteLine($"TX: dev_eui: {txByteCount} bytes");
Thread.Sleep(500);

// Read the response
rxByteCount = serialDevice.BytesToRead;
if (rxByteCount > 0)
{
   byte[] rxBuffer = new byte[rxByteCount];
   serialDevice.Read(rxBuffer);
   Debug.WriteLine($"RX :{UTF8Encoding.UTF8.GetString(rxBuffer)}");
}
...

The code is not suitable for production but it confirmed my software and hardware configuration worked.

The thread '<No Name>' (0x2) has exited with code 0 (0x0).
devMobile.IoT.Rak811.NetworkJoinOTAA starting
TX: work mode 32 bytes
RX :UART1 work mode: RUI_UART_NORAMAL
Current work_mode:LoRaWAN, join_mode:OTAA, Class: A
Initialization OK 

TX: region 33 bytes
RX :OK 

TX: join_mode 32 bytes
RX :OK 

TX: dev_eui: 45 bytes
RX :OK 

TX: app_eui 45 bytes
RX :OK 

TX: app_key 61 bytes
RX :OK 

TX: confirm 30 bytes
RX :OK 

TX: join 9 bytes
RX :OK Join Success

TX: send 43 bytes
RX :OK 

TX: send 43 bytes
RX :OK 

In the Visual Studio 2019 debug output I could see messages getting sent and then after a short delay they were visible in the TTN console.

Successful OTAA Connect TTN logging

I had some issues with TimeSpan.ToString(…) throwing a CLR_E_UNSUPPORTED_INSTRUCTION exception which has been mentioned on the GHI Forums.

I had to modify my code to fix this issue

Debug.WriteLine($"{DateTime.UtcNow:hh:mm:ss} Join start Timeout:{JoinTimeOut:hh:mm:ss}");

// Became

Debug.WriteLine($" {DateTime.UtcNow:hh:mm:ss} Join Start Timeout {timeout.TotalSeconds} seconds");

I won’t bother with confirming any other functionality as I’m reasonably confident the nanoFramework library (which this code is based on) is working as expected.