.Net Meadow RFM95/96/97/98 LoRa library Part6

Receive Interrupt

This proof of concept (PoC) was to confirm I could configure the Semtech 127X then handle the received messages using a Meadow event handler. The event handler code is based on the implementation in my Windows IoT 10 Core library.

I had added a few Console.WriteLine statements (Debug.Print currently doesn’t work Dec 2019) so I could see what was going on. But, using Console.WriteLine in the event handler caused me some problems which I had to debug. The irqFlags bit mask indicated there was a message in the FIFO but it wasn’t displayed and the interrupt mask wasn’t getting reset. As a temporary fix I refactored the code so the Console.WriteLine was the last statement in the EventHandler(which may cause other issues).

public Rfm9XDevice(IIODevice device, ISpiBus spiBus, IPin chipSelectPin, IPin resetPin, IPin interruptPin)
      {
         // Chip select pin configuration
         ChipSelectGpioPin = device.CreateDigitalOutputPort(chipSelectPin, initialState: true);
         if (ChipSelectGpioPin == null)
         {
            Console.WriteLine("ChipSelectGpioPin == null");
         }

         // Factory reset pin configuration
         IDigitalOutputPort resetGpioPin = device.CreateDigitalOutputPort(resetPin);
         if (resetGpioPin == null)
         {
            Console.WriteLine("resetGpioPin == null");
         }
         resetGpioPin.State = false;
         Task.Delay(10);
         resetGpioPin.State = true;
         Task.Delay(10);

         // Interrupt pin for RX message & TX done notification 
         InterruptGpioPin = device.CreateDigitalInputPort(interruptPin, InterruptMode.EdgeRising);
         InterruptGpioPin.Changed += InterruptGpioPin_ValueChanged;

         Rfm9XLoraModem = new SpiPeripheral(spiBus, ChipSelectGpioPin);
         if (Rfm9XLoraModem == null)
         {
            Console.WriteLine("Rfm9XLoraModem == null");
         }
      }
...
      private void InterruptGpioPin_ValueChanged(object sender, DigitalInputPortEventArgs args)
      {
         byte irqFlags = this.RegisterReadByte(0x12); // RegIrqFlags
         byte numberOfBytes = 0;
         string messageText = "";

         //Console.WriteLine(string.Format("RegIrqFlags:{0}", Convert.ToString(irqFlags, 2).PadLeft(8, '0')));
         if ((irqFlags & 0b01000000) == 0b01000000)
         {
            //Console.WriteLine("Receive-Message");
            byte currentFifoAddress = this.RegisterReadByte(0x10); // RegFifiRxCurrent
            this.RegisterWriteByte(0x0d, currentFifoAddress); // RegFifoAddrPtr

            numberOfBytes = this.RegisterReadByte(0x13); // RegRxNbBytes
            byte[] messageBytes = this.RegisterRead(0x00, numberOfBytes); // RegFifo
            messageText = UTF8Encoding.UTF8.GetString(messageBytes);
         }

         this.RegisterWriteByte(0x12, 0xff);// RegIrqFlags
         if (numberOfBytes > 0)
         {
            Console.WriteLine("Received {0} byte message {1}", numberOfBytes, messageText);
         }
      }
...
public class MeadowApp : App
{
private Rfm9XDevice rfm9XDevice;
  public MeadowApp()
  {
     ISpiBus spiBus = Device.CreateSpiBus(500);
     if (spiBus == null)
     {
        Console.WriteLine("spiBus == null");
     }

     rfm9XDevice = new Rfm9XDevice(Device, spiBus, Device.Pins.D09, Device.Pins.D11, Device.Pins.D10);

     // Put device into LoRa + Sleep mode
     rfm9XDevice.RegisterWriteByte(0x01, 0b10000000); // RegOpMode 

     // Set the frequency to 915MHz
     byte[] frequencyWriteBytes = { 0xE4, 0xC0, 0x00 }; // RegFrMsb, RegFrMid, RegFrLsb
     rfm9XDevice.RegisterWrite(0x06, frequencyWriteBytes);

     rfm9XDevice.RegisterWriteByte(0x0F, 0x0); // RegFifoRxBaseAddress 

     rfm9XDevice.RegisterWriteByte(0x40, 0b00000000); // RegDioMapping1 0b00000000 DI0 RxReady & TxReady

     rfm9XDevice.RegisterWriteByte(0x01, 0b10000101); // RegOpMode set LoRa & RxContinuous

     rfm9XDevice.RegisterDump();

     Console.WriteLine("Receive-Wait");
     Task.Delay(-1).Wait();
  }
}

The output in the output debug window looked like this

'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\WINDOWS\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll'. 
'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\ReceiveInterrupt\bin\Debug\net472\App.exe'. Symbols loaded.
'App.exe' (CLR v4.0.30319: App.exe): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\ReceiveInterrupt\bin\Debug\net472\Meadow.dll'. 
The program '[40348] App.exe: Program Trace' has exited with code 0 (0x0).
The program '[40348] App.exe' has exited with code 0 (0x0).
.
.
DirectRegisterAccess = True
.
.
Register dump
Register 0x00 - Value 0X6c - Bits 01101100
…
Register 0x42 - Value 0X12 - Bits 00010010
Receive-Wait
Received 15 byte message HeLoRa World! 0
Received 59 byte message ???LoRaIoT1Maduino2at 57.2,ah 67,wsa 1,wsg 3,wd 56.63,r 0.00,
Received 15 byte message HeLoRa World! 2
Received 15 byte message HeLoRa World! 4
Received 15 byte message HeLoRa World! 6
Received 15 byte message HeLoRa World! 8
Received 16 byte message HeLoRa World! 10

Next steps will be wiring up the transmit done interrupt, then building a full featured client based on my Windows 10 IoT Core library.

.Net Meadow RFM95/96/97/98 LoRa library Part5

Receive Basic

For testing this code I used the same version of the LoRaSetSyncWord example as Transmit Basic

20:57:40.239 -> LoRa init succeeded.
20:57:40.759 -> Sending HeLoRa World! 0
20:57:40.968 -> Message: ⸮LoRaIoT1Maduino2at 57.7,ah 64,wsa 1,wsg 2,wd 88.13,r 0.00,
20:57:41.036 -> RSSI: -72
20:57:41.036 -> Snr: 9.50
20:57:41.036 -> 
20:57:51.766 -> Sending HeLoRa World! 2
20:58:02.532 -> Sending HeLoRa World! 4
20:58:12.845 -> Sending HeLoRa World! 6
20:58:23.434 -> Sending HeLoRa World! 8
20:58:34.190 -> Sending HeLoRa World! 10
20:58:42.005 -> Message: ⸮LoRaIoT1Maduino2at 57.6,ah 64,wsa 2,wsg 5,wd 74.25,r 0.00,
20:58:42.074 -> RSSI: -72
20:58:42.074 -> Snr: 9.75

The Meadow code builds on my Windows 10 IoT Core Receive Basic and the Meadow Transmit Basic samples.

public class MeadowApp : App<F7Micro, MeadowApp>
{
	private Rfm9XDevice rfm9XDevice;

	public MeadowApp()
	{
		ISpiBus spiBus = Device.CreateSpiBus(500);
		if (spiBus == null)
		{
			Console.WriteLine("spiBus == null");
		}

		rfm9XDevice = new Rfm9XDevice(Device, spiBus, Device.Pins.D09, Device.Pins.D11);

		// Put device into LoRa + Sleep mode
		rfm9XDevice.RegisterWriteByte(0x01, 0b10000000); // RegOpMode 

		// Set the frequency to 915MHz
		byte[] frequencyWriteBytes = { 0xE4, 0xC0, 0x00 }; // RegFrMsb, RegFrMid, RegFrLsb
		rfm9XDevice.RegisterWrite(0x06, frequencyWriteBytes);

		rfm9XDevice.RegisterWriteByte(0x0F, 0x0); // RegFifoRxBaseAddress 

		rfm9XDevice.RegisterWriteByte(0x01, 0b10000101); // RegOpMode set LoRa & RxContinuous

		while (true)
		{
			// Wait until a packet is received, no timeouts in PoC
			Console.WriteLine("Receive-Wait");
			byte IrqFlags = rfm9XDevice.RegisterReadByte(0x12); // RegIrqFlags
			while ((IrqFlags & 0b01000000) == 0)  // wait until RxDone cleared
			{
				Task.Delay(100).Wait();
				IrqFlags = rfm9XDevice.RegisterReadByte(0x12); // RegIrqFlags
				Console.Write(".");
			}
			Console.WriteLine("");
			Console.WriteLine(string.Format("RegIrqFlags {0}", Convert.ToString((byte)IrqFlags, 2).PadLeft(8, '0')));
			Console.WriteLine("Receive-Message");
			byte currentFifoAddress = rfm9XDevice.RegisterReadByte(0x10); // RegFifiRxCurrent
			rfm9XDevice.RegisterWriteByte(0x0d, currentFifoAddress); // RegFifoAddrPtr

			byte numberOfBytes = rfm9XDevice.RegisterReadByte(0x13); // RegRxNbBytes

			byte[] messageBytes = rfm9XDevice.RegisterRead(0x00, numberOfBytes); // RegFifo

			rfm9XDevice.RegisterWriteByte(0x0d, 0);
			rfm9XDevice.RegisterWriteByte(0x12, 0b11111111); // RegIrqFlags clear all the bits

			string messageText = UTF8Encoding.UTF8.GetString(messageBytes);
			Console.WriteLine("Received {0} byte message {1}", messageBytes.Length, messageText);

			Console.WriteLine("Receive-Done");
		}
	}
}

The receive code works reliably but has no error detection or correction capability, so every so often a message gets corrupted. Which is can be seen in the Debug output below.

'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\WINDOWS\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll'. 
'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\ReceiveBasic\bin\Debug\net472\App.exe'. Symbols loaded.
'App.exe' (CLR v4.0.30319: App.exe): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\ReceiveBasic\bin\Debug\net472\Meadow.dll'. 
The program '[18208] App.exe: Program Trace' has exited with code 0 (0x0).
The program '[18208] App.exe' has exited with code 0 (0x0).
.
.
DirectRegisterAccess = True
.
.
Receive-Wait
RegIrqFlags 01010000
Receive-Message
Received 61 byte message ???LoRaIoT1Maduino2at 57.7,ah 64,wsa 2,wsg 4,wd 254.25,r 0.00,
Receive-Done
Receive-Wait
RegIrqFlags 01110000
Receive-Message
Received 60 byte message ???LoReE??????!???ngvyno2at,57/7-ah 6???,w???a 2,w?????????6,7$.13,r 0.00-
Receive-Done
Receive-Wait
RegIrqFlags 01010000
Receive-Message
Received 16 byte message HeLoRa World! 0
Receive-Done
Receive-Wait
RegIrqFlags 01000000
Receive-Message
Received 60 byte message ???LoRaIoT1Maduino2at 57.7,ah 64,wsa 1,wsg 2,wd 88.13,r 0.00,
Receive-Done
Receive-Wait
RegIrqFlags 01010000
Receive-Message
Received 16 byte message HeLoRa World! 2
Receive-Done
Receive-Wait

I will look at implementing some sort of carrier-sense multiple access with collision avoidance solution to reduce the number of corrupted messages when two (or possibly more devices) transmit at the same time.

Transmitting/receiving with interrupts or design goals next.

.Net Meadow RFM95/96/97/98 LoRa library Part4

Transmit Basic

I had a couple of Armtronix IA005 SX1276 loRa nodes sitting on my desk from a recent post so I used one of them running a modified version of the Arduino LoRa library LoRaSetSyncWord example to receive messages from my Meadow device.

/*
  LoRa Duplex communication with Sync Word
 
  Sends a message every half second, and polls continually
  for new incoming messages. Sets the LoRa radio's Sync Word.
 
  Spreading factor is basically the radio's network ID. Radios with different
  Sync Words will not receive each other's transmissions. This is one way you
  can filter out radios you want to ignore, without making an addressing scheme.
 
  See the Semtech datasheet, http://www.semtech.com/images/datasheet/sx1276.pdf
  for more on Sync Word.
 
  created 28 April 2017
  by Tom Igoe
*/
#include <stdlib.h>
#include <LoRa.h>
const int csPin = PA4;          // LoRa radio chip select
const int resetPin = PC13;       // LoRa radio reset
const int irqPin = PA11;         // change for your board; must be a hardware interrupt pin
 
byte msgCount = 0;            // count of outgoing messages
int interval = 2000;          // interval between sends
long lastSendTime = 0;        // time of last packet send
 
void setup() {
  Serial.begin(9600);                   // initialize serial
  while (!Serial);
 
  Serial.println("LoRa Duplex - Set sync word");
 
  // override the default CS, reset, and IRQ pins (optional)
  LoRa.setPins(csPin, resetPin, irqPin);// set CS, reset, IRQ pin
 
  if (!LoRa.begin(915E6)) {             // initialize ratio at 915 MHz
    Serial.println("LoRa init failed. Check your connections.");
    while (true);                       // if failed, do nothing
  }
 
  LoRa.setSyncWord(0x12);           // ranges from 0-0xFF, default 0x34, see API docs
 
  LoRa.dumpRegisters(Serial);
  Serial.println("LoRa init succeeded.");
}
 
void loop() {
  if (millis() - lastSendTime > interval) {
    String message = "HeLoRa World! ";   // send a message
    message += msgCount;
    sendMessage(message);
    Serial.println("Sending " + message);
    lastSendTime = millis();            // timestamp the message
    interval = random(1000) + 10000;    // 10-11 seconds
    msgCount++;
  }
 
  // parse for a packet, and call onReceive with the result:
  onReceive(LoRa.parsePacket());
}
 
void sendMessage(String outgoing) {
  LoRa.beginPacket();                   // start packet
  LoRa.print(outgoing);                 // add payload
  LoRa.endPacket();                     // finish packet and send it
  msgCount++;                           // increment message ID
}
 
void onReceive(int packetSize) {
  if (packetSize == 0) return;          // if there's no packet, return
 
  // read packet header bytes:
  String incoming = "";
 
  while (LoRa.available()) {
    incoming += (char)LoRa.read();
  }
 
  Serial.println("Message: " + incoming);
  Serial.println("RSSI: " + String(LoRa.packetRssi()));
  Serial.println("Snr: " + String(LoRa.packetSnr()));
  Serial.println();
}

The Meadow application

	public class MeadowApp : App<F7Micro, MeadowApp>
	{
		private Rfm9XDevice rfm9XDevice;

		public MeadowApp()
		{
			ISpiBus spiBus = Device.CreateSpiBus(500);
			if (spiBus == null)
			{
				Console.WriteLine("spiBus == null");
			}

			rfm9XDevice = new Rfm9XDevice(Device, spiBus, Device.Pins.D09, Device.Pins.D11);

			// Put device into LoRa + Sleep mode
			rfm9XDevice.RegisterWriteByte(0x01, 0b10000000); // RegOpMode 

			// Set the frequency to 915MHz
			byte[] frequencyWriteBytes = { 0xE4, 0xC0, 0x00 }; // RegFrMsb, RegFrMid, RegFrLsb
			rfm9XDevice.RegisterWrite(0x06, frequencyWriteBytes);

			// More power PA Boost
			rfm9XDevice.RegisterWriteByte(0x09, 0b10000000); // RegPaConfig

			while (true)
			{
				rfm9XDevice.RegisterWriteByte(0x0E, 0x0); // RegFifoTxBaseAddress 

				// Set the Register Fifo address pointer
				rfm9XDevice.RegisterWriteByte(0x0D, 0x0); // RegFifoAddrPtr 

				string messageText = "Hello LoRa!";

				// load the message into the fifo
				byte[] messageBytes = UTF8Encoding.UTF8.GetBytes(messageText);
				foreach (byte b in messageBytes)
				{
					rfm9XDevice.RegisterWriteByte(0x0, b); // RegFifo
				}

				// Set the length of the message in the fifo
				rfm9XDevice.RegisterWriteByte(0x22, (byte)messageBytes.Length); // RegPayloadLength

				Console.WriteLine("Sending {0} bytes message {1}", messageBytes.Length, messageText);
				/// Set the mode to LoRa + Transmit
				rfm9XDevice.RegisterWriteByte(0x01, 0b10000011); // RegOpMode 

				// Wait until send done, no timeouts in PoC
				Console.WriteLine("Send-wait");
				byte IrqFlags = rfm9XDevice.RegisterReadByte(0x12); // RegIrqFlags
				while ((IrqFlags & 0b00001000) == 0)  // wait until TxDone cleared
				{
					Task.Delay(10).Wait();
					IrqFlags = rfm9XDevice.RegisterReadByte(0x12); // RegIrqFlags
					Console.Write(".");
				}
				Console.WriteLine("");
				rfm9XDevice.RegisterWriteByte(0x12, 0b00001000); // clear TxDone bit
				Console.WriteLine("Send-Done");

				Task.Delay(30000).Wait();
			}
		}

When I ran the meadow application after some messing around with the jumper wires.

'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\WINDOWS\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll'. 
'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\TransmitBasic\bin\Debug\net472\App.exe'. Symbols loaded.
'App.exe' (CLR v4.0.30319: App.exe): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\TransmitBasic\bin\Debug\net472\Meadow.dll'. 
The program '[37572] App.exe: Program Trace' has exited with code 0 (0x0).
The program '[37572] App.exe' has exited with code 0 (0x0).
.
.
DirectRegisterAccess = True
.
.
Sending 11 bytes message Hello LoRa!
Send-wait
Send-Done
Sending 11 bytes message Hello LoRa!
Send-wait
.
Send-Done

I could the see the messages arriving at the Armtronix device in the Arduino monitor (the other messages in the monitor are my solar powered weather station and soil moisture monitoring node).

12:47:55.198 -> Sending HeLoRa World! 10
12:48:05.745 -> Sending HeLoRa World! 12
12:48:06.663 -> Message: ⸮LoRaIoT1Maduino2at 85.8,ah 19,wsa 5,wsg 8,wd 123.38,r 0.00,
12:48:06.730 -> RSSI: -71
12:48:06.730 -> Snr: 10.00
12:48:06.730 ->
12:48:08.770 -> Message: Hello LoRa!
12:48:08.770 -> RSSI: -47
12:48:08.804 -> Snr: 9.00
12:48:08.804 ->
12:48:16.555 -> Sending HeLoRa World! 14
12:48:26.847 -> Sending HeLoRa World! 16
12:48:37.154 -> Sending HeLoRa World! 18
12:48:39.469 -> Message: Hello LoRa!
12:48:39.469 -> RSSI: -46
12:48:39.536 -> Snr: 9.00
12:48:39.536 ->
12:48:47.311 -> Sending HeLoRa World! 20
12:48:58.094 -> Sending HeLoRa World! 22
12:49:07.748 -> Message: ⸮LoRaIoT1Maduino2at 86.0,ah 19,wsa 5,wsg 15,wd 155.63,r 0.00,
12:49:07.817 -> RSSI: -71
12:49:07.817 -> Snr: 9.50
12:49:07.817 ->
12:49:08.464 -> Sending HeLoRa World! 24
12:49:10.097 -> Message: Hello LoRa!
12:49:10.097 -> RSSI: -46
12:49:10.130 -> Snr: 9.75
12:49:10.130 ->
12:49:19.373 -> Sending HeLoRa World! 26
12:49:30.125 -> Sending HeLoRa World! 28
12:49:40.262 -> Sending HeLoRa World! 30
12:49:40.671 -> Message: Hello LoRa!
12:49:40.671 -> RSSI: -46
12:49:40.705 -> Snr: 9.25
12:49:40.705 ->
12:49:50.725 -> Sending HeLoRa World! 32
12:50:01.081 -> Sending HeLoRa World! 34
12:50:08.800 -> Message: ⸮LoRaIoT1Maduino2at 85.6,ah 19,wsa 5,wsg 11,wd 159.00,r 0.00,
12:50:08.868 -> RSSI: -72
12:50:08.868 -> Snr: 10.00
12:50:08.868 ->
12:50:11.219 -> Message: Hello LoRa!
12:50:11.219 -> RSSI: -46
12:50:11.252 -> Snr: 9.25
12:50:11.252 ->
12:50:11.526 -> Sending HeLoRa World! 36
12:50:21.731 -> Sending HeLoRa World! 38
12:50:32.696 -> Sending HeLoRa World! 40
12:50:41.741 -> Message: Hello LoRa!
12:50:41.741 -> RSSI: -46
12:50:41.775 -> Snr: 9.25
12:50:41.775 ->
12:50:43.685 -> Sending HeLoRa World! 42
12:50:54.566 -> Sending HeLoRa World! 44
12:51:05.604 -> Sending HeLoRa World! 46
12:51:09.852 -> Message: ⸮LoRaIoT1Maduino2at 85.3,ah 19,wsa 2,wsg 8,wd 150.75,r 0.00,
12:51:09.954 -> RSSI: -71
12:51:09.954 -> Snr: 9.50
12:51:09.954 ->
12:51:12.400 -> Message: Hello LoRa!
12:51:12.400 -> RSSI: -46
12:51:12.433 -> Snr: 9.00
12:51:12.433 ->
12:51:16.511 -> Sending HeLoRa World! 48
12:51:27.530 -> Sending HeLoRa World! 50
12:51:37.796 -> Sending HeLoRa World! 52
12:51:42.968 -> Message: Hello LoRa!
12:51:42.968 -> RSSI: -45
12:51:43.003 -> Snr: 9.25
12:51:43.003 ->
12:51:48.389 -> Sending HeLoRa World! 54
12:51:59.052 -> Sending HeLoRa World! 56
12:52:09.251 -> Sending HeLoRa World! 58
12:52:10.912 -> Message: ⸮LoRaIoT1Maduino2at 85.1,ah 19,wsa 2,wsg 6,wd 84.00,r 0.00,
12:52:11.013 -> RSSI: -70
12:52:11.013 -> Snr: 9.75
12:52:11.013 ->
12:52:13.546 -> Message: Hello LoRa!
12:52:13.546 -> RSSI: -46
12:52:13.581 -> Snr: 9.75
12:52:13.581 ->

This PoC code is getting a bit nasty with magic numbers and no error checking. The next step is getting a basic packet receive working…

.Net Meadow RFM95/96/97/98 LoRa library Part3

Register Read and Write

Now that I could reliably dump all the Arduino shield registers I wanted to be able to configure the Semtech 1276/7/8/9 device and reset it back to factory settings.

A factory reset is done by strobing the reset pin on the device. To support this my Rfm9XDevice class constructor gained an additional parameter, the reset GPIO pin.

Arduino shield connected to Meadow with jumper wires

To configure the RFM9X I wrote some wrapper functions for the Meadow SPI API to read/write byte values, word values and arrays of bytes. The Meadow APIs (Dec 2019) return an additional byte at the start of each reply (unlike the .NetMF and Windows 10 IoT Core APIs) which has to be removed.

Each method was tested by read/writing suitable register(s) in the device configuration (Needed to set it into LoRa mode first).

//---------------------------------------------------------------------------------
// Copyright (c) December 2019, devMobile Software
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//---------------------------------------------------------------------------------
namespace devMobile.IoT.Rfm9x.ReadAndWrite
{
   using System;
    using System.Diagnostics;
    using System.Runtime.InteropServices.WindowsRuntime;
    using System.Threading.Tasks;

   using Meadow;
   using Meadow.Devices;
   using Meadow.Hardware;

   public sealed class Rfm9XDevice
   {
      private SpiPeripheral Rfm9XLoraModem;
      private IDigitalOutputPort ChipSelectGpioPin;
		private const byte RegisterAddressReadMask = 0X7f;
		private const byte RegisterAddressWriteMask = 0x80;

		public Rfm9XDevice(IIODevice device, ISpiBus spiBus, IPin chipSelectPin, IPin resetPin)
      {
         // Chip select pin configuration
         ChipSelectGpioPin = device.CreateDigitalOutputPort(chipSelectPin, initialState: true);
         if (ChipSelectGpioPin == null)
         {
            Console.WriteLine("ChipSelectGpioPin == null");
         }

         // Factory reset pin configuration
         IDigitalOutputPort resetGpioPin = device.CreateDigitalOutputPort(resetPin);
         if (resetGpioPin == null)
         {
            Console.WriteLine("resetGpioPin == null");
         }
         resetGpioPin.State = false;
         Task.Delay(10);
         resetGpioPin.State = true;
         Task.Delay(10);

			Rfm9XLoraModem = new SpiPeripheral(spiBus, ChipSelectGpioPin);
         if (Rfm9XLoraModem == null)
         {
            Console.WriteLine("Rfm9XLoraModem == null");
         }
      }

      public Byte RegisterReadByte(byte address)
      {
         byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			Debug.Assert(Rfm9XLoraModem != null);

			byte[] readBuffer = Rfm9XLoraModem.WriteRead(writeBuffer, 2);

         return readBuffer[1];
      }

		public ushort RegisterReadWord(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			Debug.Assert(Rfm9XLoraModem != null);

			byte[] readBuffer = Rfm9XLoraModem.WriteRead(writeBuffer, 3);

			return (ushort)(readBuffer[2] + (readBuffer[1] << 8));
		}

		public byte[] RegisterRead(byte address, int length)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] repyBuffer = new byte[length + 1];
			Debug.Assert(Rfm9XLoraModem != null);

			byte[] readBuffer = Rfm9XLoraModem.WriteRead(writeBuffer, (ushort)repyBuffer.Length);

			Array.Copy(readBuffer, 1, repyBuffer, 0, length);

			return repyBuffer;
		}

		public void RegisterWriteByte(byte address, byte value)
		{
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, value };
			Debug.Assert(Rfm9XLoraModem != null);

			Rfm9XLoraModem.WriteBytes(writeBuffer);
		}

		public void RegisterWriteWord(byte address, ushort value)
		{
			byte[] valueBytes = BitConverter.GetBytes(value);
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, valueBytes[0], valueBytes[1] };
			Debug.Assert(Rfm9XLoraModem != null);

			Rfm9XLoraModem.WriteBytes(writeBuffer);
		}
		public void RegisterWrite(byte address, [ReadOnlyArray()] byte[] bytes)
		{
			byte[] writeBuffer = new byte[1 + bytes.Length];
			Debug.Assert(Rfm9XLoraModem != null);

			Array.Copy(bytes, 0, writeBuffer, 1, bytes.Length);
			writeBuffer[0] = address |= RegisterAddressWriteMask;

			Rfm9XLoraModem.WriteBytes(writeBuffer);
		}

		public void RegisterDump()
		{
			Console.WriteLine("Register dump");
			for (byte registerIndex = 0; registerIndex <= 0x42; registerIndex++)
			{
				byte registerValue = this.RegisterReadByte(registerIndex);

				Console.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
			}
		}
	}

	public class MeadowApp : App<F7Micro, MeadowApp>
   {
      private Rfm9XDevice rfm9XDevice;

      public MeadowApp()
      {
			ISpiBus spiBus = Device.CreateSpiBus(500);
         if (spiBus == null)
         {
            Console.WriteLine("spiBus == null");
         }

			rfm9XDevice = new Rfm9XDevice(Device, spiBus, Device.Pins.D09, Device.Pins.D11);

			while (true)
         {
				rfm9XDevice.RegisterDump();

				Byte regOpMode = rfm9XDevice.RegisterReadByte(0x1);

				Console.WriteLine("Set LoRa mode and sleep mode (write byte)");
				rfm9XDevice.RegisterWriteByte(0x01, 0b10000000); // 

				Console.WriteLine("Read the preamble (read word)");
				ushort preamble = rfm9XDevice.RegisterReadWord(0x20);
				Console.WriteLine("Preamble 0x{0:x2} - Bits {1}", preamble, Convert.ToString(preamble, 2).PadLeft(16, '0'));

				Console.WriteLine("Set the preamble to 0x80 (write word)");
				rfm9XDevice.RegisterWriteWord(0x20, 0x80);

				Console.WriteLine("Read the centre frequency (read byte array)");
				byte[] frequencyReadBytes = rfm9XDevice.RegisterRead(0x06, 3);
				Console.WriteLine("Frequency Msb 0x{0:x2} Mid 0x{1:x2} Lsb 0x{2:x2}", frequencyReadBytes[0], frequencyReadBytes[1], frequencyReadBytes[2]);

				Console.WriteLine("Set the centre frequency to 916MHz ( write byte array)");
				byte[] frequencyWriteBytes = { 0xE4, 0xC0, 0x00 };
				rfm9XDevice.RegisterWrite(0x06, frequencyWriteBytes);

				rfm9XDevice.RegisterDump();

				Task.Delay(30000).Wait();
			}
		}
   }
}

The output of the application looked like this

'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\WINDOWS\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll'. 
'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\RegisterReadAndWrite\bin\Debug\net472\App.exe'. Symbols loaded.
'App.exe' (CLR v4.0.30319: App.exe): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\RegisterReadAndWrite\bin\Debug\net472\Meadow.dll'. 
The program '[31296] App.exe: Program Trace' has exited with code 0 (0x0).
The program '[31296] App.exe' has exited with code 0 (0x0).
.
.
DirectRegisterAccess = True
==========================================================
Ignore the exceptions generated by the DateTime call here.
==========================================================
.
Register dump
.
Register 0x00 - Value 0X00 - Bits 00000000
Register 0x01 - Value 0X09 - Bits 00001001
Register 0x02 - Value 0X1a - Bits 00011010
Register 0x03 - Value 0X0b - Bits 00001011
Register 0x04 - Value 0X00 - Bits 00000000
Register 0x05 - Value 0X52 - Bits 01010010
Register 0x06 - Value 0X6c - Bits 01101100
Register 0x07 - Value 0X80 - Bits 10000000
Register 0x08 - Value 0X00 - Bits 00000000
Register 0x09 - Value 0X4f - Bits 01001111
Register 0x0a - Value 0X09 - Bits 00001001
Register 0x0b - Value 0X2b - Bits 00101011
Register 0x0c - Value 0X20 - Bits 00100000
Register 0x0d - Value 0X08 - Bits 00001000
Register 0x0e - Value 0X02 - Bits 00000010
Register 0x0f - Value 0X0a - Bits 00001010
Register 0x10 - Value 0Xff - Bits 11111111
Register 0x11 - Value 0X70 - Bits 01110000
Register 0x12 - Value 0X15 - Bits 00010101
Register 0x13 - Value 0X0b - Bits 00001011
Register 0x14 - Value 0X28 - Bits 00101000
Register 0x15 - Value 0X0c - Bits 00001100
Register 0x16 - Value 0X12 - Bits 00010010
Register 0x17 - Value 0X47 - Bits 01000111
Register 0x18 - Value 0X32 - Bits 00110010
Register 0x19 - Value 0X3e - Bits 00111110
Register 0x1a - Value 0X00 - Bits 00000000
Register 0x1b - Value 0X00 - Bits 00000000
Register 0x1c - Value 0X00 - Bits 00000000
Register 0x1d - Value 0X00 - Bits 00000000
Register 0x1e - Value 0X00 - Bits 00000000
Register 0x1f - Value 0X40 - Bits 01000000
Register 0x20 - Value 0X00 - Bits 00000000
Register 0x21 - Value 0X00 - Bits 00000000
Register 0x22 - Value 0X00 - Bits 00000000
Register 0x23 - Value 0X00 - Bits 00000000
Register 0x24 - Value 0X05 - Bits 00000101
Register 0x25 - Value 0X00 - Bits 00000000
Register 0x26 - Value 0X03 - Bits 00000011
Register 0x27 - Value 0X93 - Bits 10010011
Register 0x28 - Value 0X55 - Bits 01010101
Register 0x29 - Value 0X55 - Bits 01010101
Register 0x2a - Value 0X55 - Bits 01010101
Register 0x2b - Value 0X55 - Bits 01010101
Register 0x2c - Value 0X55 - Bits 01010101
Register 0x2d - Value 0X55 - Bits 01010101
Register 0x2e - Value 0X55 - Bits 01010101
Register 0x2f - Value 0X55 - Bits 01010101
Register 0x30 - Value 0X90 - Bits 10010000
Register 0x31 - Value 0X40 - Bits 01000000
Register 0x32 - Value 0X40 - Bits 01000000
Register 0x33 - Value 0X00 - Bits 00000000
Register 0x34 - Value 0X00 - Bits 00000000
Register 0x35 - Value 0X0f - Bits 00001111
Register 0x36 - Value 0X00 - Bits 00000000
Register 0x37 - Value 0X00 - Bits 00000000
Register 0x38 - Value 0X00 - Bits 00000000
Register 0x39 - Value 0Xf5 - Bits 11110101
Register 0x3a - Value 0X20 - Bits 00100000
Register 0x3b - Value 0X82 - Bits 10000010
Register 0x3c - Value 0X00 - Bits 00000000
Register 0x3d - Value 0X02 - Bits 00000010
Register 0x3e - Value 0X80 - Bits 10000000
Register 0x3f - Value 0X40 - Bits 01000000
Register 0x40 - Value 0X00 - Bits 00000000
Register 0x41 - Value 0X00 - Bits 00000000
Register 0x42 - Value 0X12 - Bits 00010010
Set LoRa mode and sleep mode (write byte)
Read the preamble (read word)
Preamble 0x08 - Bits 0000000000001000
Set the preamble to 0x80 (write word)
Read the centre frequency (read byte array)
Frequency Msb 0x6c Mid 0x80 Lsb 0x00
Set the centre frequency to 916MHz ( write byte array)
Register dump
Register 0x00 - Value 0Xf4 - Bits 11110100
Register 0x01 - Value 0X80 - Bits 10000000
Register 0x02 - Value 0X1a - Bits 00011010
Register 0x03 - Value 0X0b - Bits 00001011
Register 0x04 - Value 0X00 - Bits 00000000
Register 0x05 - Value 0X52 - Bits 01010010
Register 0x06 - Value 0Xe4 - Bits 11100100
Register 0x07 - Value 0Xc0 - Bits 11000000
Register 0x08 - Value 0X00 - Bits 00000000
Register 0x09 - Value 0X4f - Bits 01001111
Register 0x0a - Value 0X09 - Bits 00001001
Register 0x0b - Value 0X2b - Bits 00101011
Register 0x0c - Value 0X20 - Bits 00100000
Register 0x0d - Value 0X02 - Bits 00000010
Register 0x0e - Value 0X80 - Bits 10000000
Register 0x0f - Value 0X00 - Bits 00000000
Register 0x10 - Value 0X00 - Bits 00000000
Register 0x11 - Value 0X00 - Bits 00000000
Register 0x12 - Value 0X00 - Bits 00000000
Register 0x13 - Value 0X00 - Bits 00000000
Register 0x14 - Value 0X00 - Bits 00000000
Register 0x15 - Value 0X00 - Bits 00000000
Register 0x16 - Value 0X00 - Bits 00000000
Register 0x17 - Value 0X00 - Bits 00000000
Register 0x18 - Value 0X10 - Bits 00010000
Register 0x19 - Value 0X00 - Bits 00000000
Register 0x1a - Value 0X00 - Bits 00000000
Register 0x1b - Value 0X00 - Bits 00000000
Register 0x1c - Value 0X00 - Bits 00000000
Register 0x1d - Value 0X72 - Bits 01110010
Register 0x1e - Value 0X70 - Bits 01110000
Register 0x1f - Value 0X64 - Bits 01100100
Register 0x20 - Value 0X80 - Bits 10000000
Register 0x21 - Value 0X00 - Bits 00000000
Register 0x22 - Value 0X01 - Bits 00000001
Register 0x23 - Value 0Xff - Bits 11111111
Register 0x24 - Value 0X00 - Bits 00000000
Register 0x25 - Value 0X00 - Bits 00000000
Register 0x26 - Value 0X04 - Bits 00000100
Register 0x27 - Value 0X00 - Bits 00000000
Register 0x28 - Value 0X00 - Bits 00000000
Register 0x29 - Value 0X00 - Bits 00000000
Register 0x2a - Value 0X00 - Bits 00000000
Register 0x2b - Value 0X00 - Bits 00000000
Register 0x2c - Value 0X00 - Bits 00000000
Register 0x2d - Value 0X50 - Bits 01010000
Register 0x2e - Value 0X14 - Bits 00010100
Register 0x2f - Value 0X45 - Bits 01000101
Register 0x30 - Value 0X55 - Bits 01010101
Register 0x31 - Value 0Xc3 - Bits 11000011
Register 0x32 - Value 0X05 - Bits 00000101
Register 0x33 - Value 0X27 - Bits 00100111
Register 0x34 - Value 0X1c - Bits 00011100
Register 0x35 - Value 0X0a - Bits 00001010
Register 0x36 - Value 0X03 - Bits 00000011
Register 0x37 - Value 0X0a - Bits 00001010
Register 0x38 - Value 0X42 - Bits 01000010
Register 0x39 - Value 0X12 - Bits 00010010
Register 0x3a - Value 0X49 - Bits 01001001
Register 0x3b - Value 0X1d - Bits 00011101
Register 0x3c - Value 0X00 - Bits 00000000
Register 0x3d - Value 0Xaf - Bits 10101111
Register 0x3e - Value 0X00 - Bits 00000000
Register 0x3f - Value 0X00 - Bits 00000000
Register 0x40 - Value 0X00 - Bits 00000000
Register 0x41 - Value 0X00 - Bits 00000000
Register 0x42 - Value 0X12 - Bits 00010010

The next step is to extract the SPI register access functionality into a module and configure the bare minimum of settings required to get the RFM9X to transmit.

.Net Meadow RFM95/96/97/98 LoRa library Part2

Register Dump

Next step was to dump all registers (0x00 thru 0x42) of the SX1276/7/8/9 device

//---------------------------------------------------------------------------------
// Copyright (c) December 2019, devMobile Software
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//---------------------------------------------------------------------------------
namespace devMobile.IoT.Rfm9x.RegisterScan
{
   using System;
   using System.Threading.Tasks;

   using Meadow;
   using Meadow.Devices;
   using Meadow.Hardware;

   public sealed class Rfm9XDevice
   {
      private SpiPeripheral sx127xDevice;
      private IDigitalOutputPort spiPeriphChipSelect;

      public Rfm9XDevice(IIODevice device, ISpiBus spiBus, IPin chipSelectPin)
      {
         spiPeriphChipSelect = device.CreateDigitalOutputPort(chipSelectPin, initialState: true);
         if (spiPeriphChipSelect == null)
         {
            Console.WriteLine("spiPeriphChipSelect == null");
         }

         sx127xDevice = new SpiPeripheral(spiBus, spiPeriphChipSelect);
         if (sx127xDevice == null)
         {
            Console.WriteLine("sx127xDevice == null");
         }
      }

      public Byte RegisterReadByte(byte registerAddress)
      {
         byte[] txBuffer = new byte[] { registerAddress };

         byte[] rxBuffer = sx127xDevice.WriteRead(txBuffer, 2);

         return rxBuffer[1];
      }
   }

   public class MeadowApp : App<F7Micro, MeadowApp>
   {
      private Rfm9XDevice rfm9XDevice;

      public MeadowApp()
      {
         ISpiBus spiBus = Device.CreateSpiBus(500);
         if (spiBus == null)
         {
            Console.WriteLine("spiBus == null");
         }

         rfm9XDevice = new Rfm9XDevice(Device, spiBus, Device.Pins.D09);

         while (true)
         {
            for (byte registerIndex = 0; registerIndex <= 0x42; registerIndex++)
            {
               byte registerValue = rfm9XDevice.RegisterReadByte(registerIndex);

               Console.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
            }

            Task.Delay(10000).Wait();
         }
      }
   }
}

The output of the application looked like this

'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\WINDOWS\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll'. 
'App.exe' (CLR v4.0.30319: DefaultDomain): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\RegisterScan\bin\Debug\net472\App.exe'. Symbols loaded.
'App.exe' (CLR v4.0.30319: App.exe): Loaded 'C:\Users\BrynLewis\source\repos\RFM9X.Meadow\RegisterScan\bin\Debug\net472\Meadow.dll'. 
The program '[3148] App.exe: Program Trace' has exited with code 0 (0x0).
The program '[3148] App.exe' has exited with code 0 (0x0).
.
.
DirectRegisterAccess = True
==========================================================
Ignore the exceptions generated by the DateTime call here.
==========================================================
.
Register 0x00 - Value 0X00 - Bits 00000000
Register 0x01 - Value 0X09 - Bits 00001001
Register 0x02 - Value 0X1a - Bits 00011010
Register 0x03 - Value 0X0b - Bits 00001011
Register 0x04 - Value 0X00 - Bits 00000000
Register 0x05 - Value 0X52 - Bits 01010010
Register 0x06 - Value 0X6c - Bits 01101100
Register 0x07 - Value 0X80 - Bits 10000000
Register 0x08 - Value 0X00 - Bits 00000000
Register 0x09 - Value 0X4f - Bits 01001111
Register 0x0a - Value 0X09 - Bits 00001001
Register 0x0b - Value 0X2b - Bits 00101011
Register 0x0c - Value 0X20 - Bits 00100000
Register 0x0d - Value 0X08 - Bits 00001000
Register 0x0e - Value 0X02 - Bits 00000010
Register 0x0f - Value 0X0a - Bits 00001010
Register 0x10 - Value 0Xff - Bits 11111111
Register 0x11 - Value 0X71 - Bits 01110001
Register 0x12 - Value 0X15 - Bits 00010101
Register 0x13 - Value 0X0b - Bits 00001011
Register 0x14 - Value 0X28 - Bits 00101000
Register 0x15 - Value 0X0c - Bits 00001100
Register 0x16 - Value 0X12 - Bits 00010010
Register 0x17 - Value 0X47 - Bits 01000111
Register 0x18 - Value 0X32 - Bits 00110010
Register 0x19 - Value 0X3e - Bits 00111110
Register 0x1a - Value 0X00 - Bits 00000000
Register 0x1b - Value 0X00 - Bits 00000000
Register 0x1c - Value 0X00 - Bits 00000000
Register 0x1d - Value 0X00 - Bits 00000000
Register 0x1e - Value 0X00 - Bits 00000000
Register 0x1f - Value 0X40 - Bits 01000000
Register 0x20 - Value 0X00 - Bits 00000000
Register 0x21 - Value 0X00 - Bits 00000000
Register 0x22 - Value 0X00 - Bits 00000000
Register 0x23 - Value 0X00 - Bits 00000000
Register 0x24 - Value 0X05 - Bits 00000101
Register 0x25 - Value 0X00 - Bits 00000000
Register 0x26 - Value 0X03 - Bits 00000011
Register 0x27 - Value 0X93 - Bits 10010011
Register 0x28 - Value 0X55 - Bits 01010101
Register 0x29 - Value 0X55 - Bits 01010101
Register 0x2a - Value 0X55 - Bits 01010101
Register 0x2b - Value 0X55 - Bits 01010101
Register 0x2c - Value 0X55 - Bits 01010101
Register 0x2d - Value 0X55 - Bits 01010101
Register 0x2e - Value 0X55 - Bits 01010101
Register 0x2f - Value 0X55 - Bits 01010101
Register 0x30 - Value 0X90 - Bits 10010000
Register 0x31 - Value 0X40 - Bits 01000000
Register 0x32 - Value 0X40 - Bits 01000000
Register 0x33 - Value 0X00 - Bits 00000000
Register 0x34 - Value 0X00 - Bits 00000000
Register 0x35 - Value 0X0f - Bits 00001111
Register 0x36 - Value 0X00 - Bits 00000000
Register 0x37 - Value 0X00 - Bits 00000000
Register 0x38 - Value 0X00 - Bits 00000000
Register 0x39 - Value 0Xf5 - Bits 11110101
Register 0x3a - Value 0X20 - Bits 00100000
Register 0x3b - Value 0X82 - Bits 10000010
Register 0x3c - Value 0Xfd - Bits 11111101
Register 0x3d - Value 0X02 - Bits 00000010
Register 0x3e - Value 0X80 - Bits 10000000
Register 0x3f - Value 0X40 - Bits 01000000
Register 0x40 - Value 0X00 - Bits 00000000
Register 0x41 - Value 0X00 - Bits 00000000
Register 0x42 - Value 0X12 - Bits 00010010

I also started to refactor the code, passing the Meadow IIODevice & ISpiBus into the constructor, and extracting the Read functionality.

The device was not in LoRa mode (Bit 7 of RegOpMode 0x01) so the next step was to read and write registers so I could change its configuration.

Maduino LoRa Air Temperature and Soil Moisture

This is a demo MakerFabs Maduino LoRa Radio 868MHz client (based on Maduino LoRa 868MHz example) that uploads telemetry data to my Windows 10 IoT Core on Raspberry PI AdaFruit.IO and Azure IoT Hub field gateways.

The code is available on github

Sample hardware
Azure IoT Central data visualisation

The Maduino device in the picture is a custom version with an onboard Microchip ATSHA204 crypto and authentication chip (currently only use for the unique 72 bit serial number) and a voltage divider connected to the analog pin A6 to monitor the battery voltage.

There are compile time options ATSHA204 & BATTERY_VOLTAGE_MONITOR which can be used to selectively enable this functionality.

I use the Arduino lowpower library to aggressively sleep the device between measurements

// Adjust the delay so period is close to desired sec as possible, first do 8sec chunks. 
  int delayCounter = SensorUploadDelay / 8 ;
  for( int i = 0 ; i < delayCounter ; i++ )
  {
     LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF);  
  }
  
  // Then to 4 sec chunk
  delayCounter =  ( SensorUploadDelay % 8 ) / 4;
  for( int i = 0 ; i < delayCounter ; i++ )
  {
     LowPower.powerDown(SLEEP_4S, ADC_OFF, BOD_OFF);  
  }

  // Then to 2 sec chunk
  delayCounter =  ( SensorUploadDelay % 4 ) / 2 ;
  for( int i = 0 ; i < delayCounter ; i++ )
  {
     LowPower.powerDown(SLEEP_2S, ADC_OFF, BOD_OFF);  
  }

  // Then to 1 sec chunk
  delayCounter =  ( SensorUploadDelay % 2 ) ;
  for( int i = 0 ; i < delayCounter ; i++ )
  {
     LowPower.powerDown(SLEEP_1S, ADC_OFF, BOD_OFF);  
  }
}

I use a spare digital PIN for powering the soil moisture probe so it can be powered down when not in use. I have included a short delay after powering up the device to allow the reading to settle.

  // Turn on soil mosture sensor, take reading then turn off to save power
  digitalWrite(SoilMoistureSensorEnablePin, HIGH);
  delay(SoilMoistureSensorEnableDelay);
  int soilMoistureADCValue = analogRead(SoilMoistureSensorPin);
  digitalWrite(SoilMoistureSensorEnablePin, LOW);
  int soilMoisture = map(soilMoistureADCValue,SoilMoistureSensorMinimum,SoilMoistureSensorMaximum, SoilMoistureValueMinimum, SoilMoistureValueMaximum); 
  PayloadAdd( "s", soilMoisture, false);

Bill of materials (Prices Nov 2019)

  • Maduino LoRa Radion (868MHz) 18.90
  • SHT20 I2C Temperature & Humidity Sensor (Waterproof Probe) USD22.50
  • Pinotech SoilWatch 10 – Soil moisture sensor USD23
  • Elecrow 1 Watt solar panel with wires USD3.80
  • 500 mAh LI-Ion battery

The software could easily be modified to support additional sensors.

iwanders/plainRFM69 revisited

After problems with interleaved interrupt handling in my Windows 10 IoT Core client I figured the AutoMode used by the plainRFM69 library might be worth investigation. My first Arduino client was based on the plainRFM69 library but had Interoperability issues.

For this attempt I also started with the minimal sample and modified the code to send and receive text messages.

/*
    Copyright (c) 2014, Ivor Wanders, Bryn Lewis 2019
    MIT License, see the LICENSE.md file in the root folder.
*/

#include <SPI.h>
#include <plainRFM69.h>

// slave select pin.
#define SLAVE_SELECT_PIN 10

// connected to the reset pin of the RFM69.
#define RESET_PIN 9

// tie this pin down on the receiver.
#define SENDER_DETECT_PIN A0

const uint8_t tx_buffer[] = "ABCDEFGHIJKLMNOPQRSTURWXYZ1234567890";
//const uint8_t tx_buffer[] = "abcdefghijklmnopqrstuvwxyz1234567890";
uint8_t rx_buffer[sizeof(tx_buffer)] = "";

plainRFM69 rfm = plainRFM69(SLAVE_SELECT_PIN);


void sender() {

  uint32_t start_time = millis();

  uint32_t counter = 1; // the counter which we are going to send.

  while (true) {
    rfm.poll(); // run poll as often as possible.

    if (!rfm.canSend()) {
      continue; // sending is not possible, already sending.
    }

    if ((millis() - start_time) > 1000) { // every 500 ms.
      start_time = millis();

      // be a little bit verbose.
      Serial.print("Send:"); Serial.println(counter);

      // send the number of bytes equal to that set with setPacketLength.
      // read those bytes from memory where counter starts.
      rfm.sendVariable(tx_buffer, counter);

      counter++; // increase the counter.

      if ( counter > strlen(tx_buffer))
      {
        counter = 1;
      }
    }
  }
}

void receiver() {
  uint32_t counter = 0; // to count the messages.

  while (true) {

    rfm.poll(); // poll as often as possible.

    while (rfm.available())
    {
      uint8_t len = rfm.read(rx_buffer); // read the packet into the new_counter.

      // print verbose output.
      Serial.print("Packet Len:");
      Serial.print( len );
      Serial.print(" : ");
      Serial.println((char*)rx_buffer);
    }
  }
}

void setup() {
  Serial.begin(9600);
  SPI.begin();

  bareRFM69::reset(RESET_PIN); // sent the RFM69 a hard-reset.

  //rfm.setRecommended(); // set recommended paramters in RFM69.
  rfm.setPacketType(true, false); // set the used packet type.

  rfm.setBufferSize(2);   // set the internal buffer size.
  rfm.setPacketLength(sizeof(rx_buffer)); // set the packet length.

  rfm.setFrequency((uint32_t)909560000); // set the frequency.

  rfm.setLNA(RFM69_LNA_IMP_200OHM, RFM69_LNA_GAIN_AGC_LOOP);

  // p71, 3 preamble bytes.
  rfm.setPreambleSize(16);

  // p71, 4 bytes sync of 0x01, only start listening when sync is matched.
  //uint8_t syncthing[] = {0xaa, 0x2d, 0xd4};
  uint8_t syncthing[] = {0xd4, 0x2d, 0xaa};
  rfm.setSyncConfig(true, false, sizeof(syncthing), 0);
  rfm.setSyncValue(&syncthing, sizeof(syncthing));

  rfm.dumpRegisters(Serial);

  // baudrate is default, 4800 bps now.

  rfm.receive();
  // set it to receiving mode.

  pinMode(SENDER_DETECT_PIN, INPUT_PULLUP);
  delay(5);
}

void loop() {
  if (digitalRead(SENDER_DETECT_PIN) == LOW) {
    Serial.println("Going Receiver!");
    receiver();
    // this function never returns and contains an infinite loop.
  } else {
    Serial.println("Going sender!");
    sender();
    // idem.
  }
}

I took the list register values and loaded them into a Excel spreadsheet alongside the values from my Windows 10 IoT Core application

17:35:03.044 -> 0x0: 0x0
17:35:03.078 -> 0x1: 0x4
17:35:03.078 -> 0x2: 0x0
17:35:03.078 -> 0x3: 0x1A
17:35:03.112 -> 0x4: 0xB
17:35:03.112 -> 0x5: 0x0
17:35:03.112 -> 0x6: 0x52
17:35:03.146 -> 0x7: 0xE3
17:35:03.146 -> 0x8: 0x63
17:35:03.146 -> 0x9: 0xD7
17:35:03.180 -> 0xA: 0x41
17:35:03.180 -> 0xB: 0x40
17:35:03.180 -> 0xC: 0x2
17:35:03.215 -> 0xD: 0x92
17:35:03.215 -> 0xE: 0xF5
17:35:03.249 -> 0xF: 0x20
17:35:03.249 -> 0x10: 0x24
17:35:03.249 -> 0x11: 0x9F
17:35:03.282 -> 0x12: 0x9
17:35:03.282 -> 0x13: 0x1A
17:35:03.282 -> 0x14: 0x40
17:35:03.317 -> 0x15: 0xB0
17:35:03.317 -> 0x16: 0x7B
17:35:03.317 -> 0x17: 0x9B
17:35:03.317 -> 0x18: 0x88
17:35:03.351 -> 0x19: 0x86
17:35:03.351 -> 0x1A: 0x8A
17:35:03.384 -> 0x1B: 0x40
17:35:03.384 -> 0x1C: 0x80
17:35:03.384 -> 0x1D: 0x6
17:35:03.418 -> 0x1E: 0x10
17:35:03.418 -> 0x1F: 0x0
17:35:03.452 -> 0x20: 0x0
17:35:03.452 -> 0x21: 0x0
17:35:03.452 -> 0x22: 0x0
17:35:03.487 -> 0x23: 0x2
17:35:03.487 -> 0x24: 0xFF
17:35:03.487 -> 0x25: 0x0
17:35:03.521 -> 0x26: 0x5
17:35:03.521 -> 0x27: 0x80
17:35:03.521 -> 0x28: 0x0
17:35:03.556 -> 0x29: 0xFF
17:35:03.556 -> 0x2A: 0x0
17:35:03.556 -> 0x2B: 0x0
17:35:03.556 -> 0x2C: 0x0
17:35:03.590 -> 0x2D: 0x10
17:35:03.590 -> 0x2E: 0x90
17:35:03.624 -> 0x2F: 0xAA
17:35:03.624 -> 0x30: 0x2D
17:35:03.624 -> 0x31: 0xD4
17:35:03.659 -> 0x32: 0x0
17:35:03.659 -> 0x33: 0x0
17:35:03.659 -> 0x34: 0x0
17:35:03.693 -> 0x35: 0x0
17:35:03.693 -> 0x36: 0x0
17:35:03.728 -> 0x37: 0xD0
17:35:03.728 -> 0x38: 0x25
17:35:03.728 -> 0x39: 0x0
17:35:03.761 -> 0x3A: 0x0
17:35:03.761 -> 0x3B: 0x0
17:35:03.761 -> 0x3C: 0x1
17:35:03.795 -> 0x3D: 0x0
17:35:03.795 -> Going sender!
17:35:04.725 -> Send:1

Arduino RFM69HCW Client in receive mode

First thing I noticed was the order of the three sync byes (Registers 0x2F, 0x30, 0x31) was reversed. I then modified the run method in the Windows 10 code so the registers settings on both devices matched. (I removed the PlainRFM69 SetRecommended call so as many of the default options as possible were used).

public void Run(IBackgroundTaskInstance taskInstance)
{
	byte[] syncValues = { 0xAA, 0x2D, 0xD4 };
	byte[] aesKeyValues = { 0x0, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0X0E, 0X0F };

	try
	{
		rfm69Device.Initialise(Rfm69HcwDevice.RegOpModeMode.StandBy
										,frequency: 909560000.0 
										,dio0Mapping: Rfm69HcwDevice.Dio0Mapping.ReceiveCrcOk
										,preambleSize: 16												
										,syncValues: syncValues
										,packetFormat: Rfm69HcwDevice.RegPacketConfig1PacketFormat.VariableLength
										,packetDcFree: Rfm69HcwDevice.RegPacketConfig1DcFree.Whitening
										,autoRestartRx: false
										//,addressNode: 0x22
										//,addressbroadcast: 0x99
										//,aesKey: aesKeyValues
										);

		rfm69Device.OnReceive += Rfm69Device_OnReceive;
		rfm69Device.OnTransmit += Rfm69Device_OnTransmit;

		rfm69Device.RegisterDump();
		rfm69Device.SetMode(Rfm69HcwDevice.RegOpModeMode.Receive);


		while (true)
		{
			if (true)
			{
				string message = $"hello world {Environment.MachineName} {DateTime.Now:hh-mm-ss}";

				byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes(message);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-{1}", DateTime.Now, message);
				//rfm69Device.SendMessage( 0x11, messageBuffer);
				rfm69Device.SendMessage(messageBuffer);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

				Task.Delay(5000).Wait();
			}
			else
			{
				Debug.Write(".");
				Task.Delay(1000).Wait();
			}
		}
	}
	catch (Exception ex)
	{
		Debug.WriteLine(ex.Message);
	}
}

I also found an error with the declaration of the RegPacketConfig1DcFree enumeration (Whitening = 0b0100000 vs. Whitening = 0b01000000) which wouldn’t have helped.

public enum RegPacketConfig1DcFree : byte
{
	None = 0b00000000,
	Manchester = 0b00100000,
	Whitening = 0b01000000,
	Reserved = 0b01100000,
}
const RegPacketConfig1DcFree RegPacketConfig1DcFreeDefault = RegPacketConfig1DcFree.None;

I could then reliably sent messages to and receive messages from my Arduino Nano Radio Shield RFM69/95 device

Register 0x4c - Value 0X00 - Bits 00000000
Register 0x4d - Value 0X00 - Bits 00000000
...
17:55:53.559 Received 1 byte message A CRC Ok True
.17:55:54.441 Received 2 byte message AB CRC Ok True
.17:55:55.444 Received 3 byte message ABC CRC Ok True
.17:55:56.447 Received 4 byte message ABCD CRC Ok True
.17:55:57.449 Received 5 byte message ABCDE CRC Ok True
.17:55:58.453 Received 6 byte message ABCDEF CRC Ok True
The thread 0x578 has exited with code 0 (0x0).
.17:55:59.622 Received 7 byte message ABCDEFG CRC Ok True
.17:56:00.457 Received 8 byte message ABCDEFGH CRC Ok True
.17:56:01.460 Received 9 byte message ABCDEFGHI CRC Ok True
.17:56:02.463 Received 10 byte message ABCDEFGHIJ CRC Ok True
..17:56:03.955 Received 11 byte message ABCDEFGHIJK CRC Ok True
17:56:04.583 Received 12 byte message ABCDEFGHIJKL CRC Ok True

I did some investigation into that the plainRMF69 code and found the ReadMultiple and WriteMuliple methods reverse the byte order

void bareRFM69::writeMultiple(uint8_t reg, void* data, uint8_t len){
    SPI.beginTransaction(SPISettings(10000000, MSBFIRST, SPI_MODE0));  // gain control of SPI bus
    this->chipSelect(true); // assert chip select
    SPI.transfer(RFM69_WRITE_REG_MASK | (reg & RFM69_READ_REG_MASK)); 
    uint8_t* r = reinterpret_cast<uint8_t*>(data);
    for (uint8_t i=0; i < len ; i++){
        SPI.transfer(r[len - i - 1]);
    }
    this->chipSelect(false);// deassert chip select
    SPI.endTransaction();    // release the SPI bus
}

void bareRFM69::readMultiple(uint8_t reg, void* data, uint8_t len){
    SPI.beginTransaction(SPISettings(10000000, MSBFIRST, SPI_MODE0));  // gain control of SPI bus
    this->chipSelect(true); // assert chip select
    
    SPI.transfer((reg % RFM69_READ_REG_MASK));
    uint8_t* r = reinterpret_cast<uint8_t*>(data);
    for (uint8_t i=0; i < len ; i++){
        r[len - i - 1] = SPI.transfer(0);
    }
    this->chipSelect(false);// deassert chip select
    SPI.endTransaction();    // release the SPI bus
}

I won’t be able to use interrupt AutoMode clients with the EasySensors shields as the DIO2 pin is not connected but on the AdaFruit RFM69HCW Radio Bonnet 433MHz or 915MHz it is connected to GPIO24.

RFM69 hat library Part10

Encryption: Rasmatic/RFM69-Arduino-Library

The RFM69CW/RFM69HCW modules (based on the Semtech SX1231/SX1231H) have built in support for AES128 encryption. In this test harness I’m exploring the RFM69 AES128 implementation.

In the Arduino code I found the order of initialisation was critical. Because of the way the Rasmatic library is written the call to vRF69SetAesKey has to be after the vInitialize.

void setup() 
{
  Serial.begin(9600);

  pinMode(SENDER_DETECT_PIN, INPUT_PULLUP);  
  
  radio.Modulation     = FSK;
  radio.COB            = RFM69;
  radio.Frequency      = 915000;
  radio.OutputPower    = 10+18;          //10dBm OutputPower
  radio.PreambleLength = 16;             //16Byte preamble
  radio.FixedPktLength = false;          //packet in message which need to be send
  radio.CrcDisable     = false;          //CRC On
  radio.AesOn          = false;
  radio.SymbolTime     = 416000;         //2.4Kbps
  radio.Devation       = 35;             //35KHz for devation
  radio.BandWidth      = 100;            //100KHz for bandwidth
  radio.SyncLength     = 3;              //
  radio.SyncWord[0]    = 0xAA;
  radio.SyncWord[1]    = 0x2D;
  radio.SyncWord[2]    = 0xD4;

  // Highly secure 16byte fixed length key
  radio.AesKey[0] = 0x0;
  radio.AesKey[1] = 0x1;
  radio.AesKey[2] = 0x2;
  radio.AesKey[3] = 0x3;
  radio.AesKey[4] = 0x4;
  radio.AesKey[5] = 0x5;
  radio.AesKey[6] = 0x6;
  radio.AesKey[7] = 0x7;
  radio.AesKey[8] = 0x8;
  radio.AesKey[9] = 0x9;
  radio.AesKey[10] = 0xA;
  radio.AesKey[11] = 0xB;
  radio.AesKey[12] = 0xC;
  radio.AesKey[13] = 0xD;
  radio.AesKey[14] = 0xE;
  radio.AesKey[15] = 0xF;
  radio.AesOn = true ;

  radio.vInitialize();

  radio.vRF69SetAesKey();

When I first fired up the Arduino client on the Windows 10 IoT Core device I hadn’t configured the AES key but had enabled encryption.

19:21:25 Received 13 byte message =!{��>�_��5
19:21:26.114 RegIrqFlags 01000110
19:21:26 Received 13 byte message ���gǺm,0|��
19:21:26.273 Send-Done
19:21:26.453 RegIrqFlags 00001000
19:21:26.467 Transmit-Done
19:21:27.244 RegIrqFlags 01000110
19:21:27 Received 13 byte message w6�H�Y���#"#
19:21:28.373 RegIrqFlags 01000110
19:21:28 Received 13 byte message c�u�$mԙ���M{
...
Restart Arduino client
...
19:21:34.836 RegIrqFlags 01000110
19:21:34 Received 13 byte message ���gǺm,0|��
19:21:35.965 RegIrqFlags 01000110
19:21:35 Received 13 byte message w6�H�Y���#"#
19:21:36.429 Send-Done
19:21:36.610 RegIrqFlags 00001000
19:21:36.624 Transmit-Done
19:21:37.095 RegIrqFlags 01000110
19:21:37 Received 13 byte message c�u�$mԙ���M{
The program '[1560] backgroundTaskHost.exe' has exited with code -1 (0xffffffff).

When I restarted the Arduino client I got the same sequences of characters in the messages so it looks like the RFM69 encryption is most probably using electronic code book (ECB) rather than a mode with a changing initialisation vector(IV) e.g. cypher block chaining(CBC). (which wasn’t a surprise)

After modifying the Windows 10 IoT Core application to receive and transmit encrypted payloads

/*
    Copyright ® 2019 July devMobile Software, All Rights Reserved

	 MIT License

	 Permission is hereby granted, free of charge, to any person obtaining a copy
	 of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
	 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all
	 copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
	 SOFTWARE

 */
namespace devMobile.IoT.Rfm69Hcw.Encryption
{
	using System;
	using System.Diagnostics;
	using System.Runtime.InteropServices.WindowsRuntime;
	using System.Text;
	using System.Threading.Tasks;
	using Windows.ApplicationModel.Background;
	using Windows.Devices.Gpio;
	using Windows.Devices.Spi;

	public sealed class Rfm69HcwDevice
	{
		private SpiDevice Rfm69Hcw;
		private GpioPin InterruptGpioPin = null;
		private const byte RegisterAddressReadMask = 0X7f;
		private const byte RegisterAddressWriteMask = 0x80;

		public Rfm69HcwDevice(int chipSelectPin, int resetPin, int interruptPin)
		{
			SpiController spiController = SpiController.GetDefaultAsync().AsTask().GetAwaiter().GetResult();
			var settings = new SpiConnectionSettings(chipSelectPin)
			{
				ClockFrequency = 500000,
				Mode = SpiMode.Mode0,
			};

			// Factory reset pin configuration
			GpioController gpioController = GpioController.GetDefault();
			GpioPin resetGpioPin = gpioController.OpenPin(resetPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Output);
			resetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			resetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Interrupt pin for RX message & TX done notification 
			InterruptGpioPin = gpioController.OpenPin(interruptPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Input);

			InterruptGpioPin.ValueChanged += InterruptGpioPin_ValueChanged;

			Rfm69Hcw = spiController.GetDevice(settings);
		}

		private void InterruptGpioPin_ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs args)
		{
			if (args.Edge != GpioPinEdge.RisingEdge)
			{
				return;
			}

			byte irqFlags = this.RegisterReadByte(0x28); // RegIrqFlags2
			Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags {1}", DateTime.Now, Convert.ToString((byte)irqFlags, 2).PadLeft(8, '0'));
			if ((irqFlags & 0b00000100) == 0b00000100)  // PayLoadReady set
			{
				// Read the length of the buffer
				byte numberOfBytes = this.RegisterReadByte(0x0);

				// Allocate buffer for message
				byte[] messageBytes = new byte[numberOfBytes];

				for (int i = 0; i < numberOfBytes; i++)
				{
					messageBytes[i] = this.RegisterReadByte(0x00); // RegFifo
				}

				string messageText = UTF8Encoding.UTF8.GetString(messageBytes);
				Debug.WriteLine("{0:HH:mm:ss} Received {1} byte message {2}", DateTime.Now, messageBytes.Length, messageText);
			}

			if ((irqFlags & 0b00001000) == 0b00001000)  // PacketSent set
			{
				this.RegisterWriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode
				Debug.WriteLine("{0:HH:mm:ss.fff} Transmit-Done", DateTime.Now);
			}
		}

		public Byte RegisterReadByte(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[1];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer[0];
		}

		public byte[] RegisterRead(byte address, int length)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[length];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer;
		}

		public void RegisterWriteByte(byte address, byte value)
		{
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, value };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterWrite(byte address, [ReadOnlyArray()] byte[] bytes)
		{
			byte[] writeBuffer = new byte[1 + bytes.Length];
			Debug.Assert(Rfm69Hcw != null);

			Array.Copy(bytes, 0, writeBuffer, 1, bytes.Length);
			writeBuffer[0] = address |= RegisterAddressWriteMask;

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterDump()
		{
			Debug.WriteLine("Register dump");
			for (byte registerIndex = 0; registerIndex <= 0x3D; registerIndex++)
			{
				byte registerValue = this.RegisterReadByte(registerIndex);

				Debug.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
			}
		}
	}


	public sealed class StartupTask : IBackgroundTask
	{
		private const int ChipSelectLine = 1;
		private const int ResetPin = 25;
		private const int InterruptPin = 22;
		private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectLine, ResetPin, InterruptPin);

		const double RH_RF6M9HCW_FXOSC = 32000000.0;
		const double RH_RFM69HCW_FSTEP = RH_RF6M9HCW_FXOSC / 524288.0;

		public void Run(IBackgroundTaskInstance taskInstance)
		{
			//rfm69Device.RegisterDump();

			// regOpMode standby
			rfm69Device.RegisterWriteByte(0x01, 0b00000100);

			// BitRate MSB/LSB
			rfm69Device.RegisterWriteByte(0x03, 0x34);
			rfm69Device.RegisterWriteByte(0x04, 0x00);

			// Frequency deviation
			rfm69Device.RegisterWriteByte(0x05, 0x02);
			rfm69Device.RegisterWriteByte(0x06, 0x3d);

			// Calculate the frequency accoring to the datasheett
			byte[] bytes = BitConverter.GetBytes((uint)(915000000.0 / RH_RFM69HCW_FSTEP));
			Debug.WriteLine("Byte Hex 0x{0:x2} 0x{1:x2} 0x{2:x2} 0x{3:x2}", bytes[0], bytes[1], bytes[2], bytes[3]);
			rfm69Device.RegisterWriteByte(0x07, bytes[2]);
			rfm69Device.RegisterWriteByte(0x08, bytes[1]);
			rfm69Device.RegisterWriteByte(0x09, bytes[0]);

			// RegRxBW
			rfm69Device.RegisterWriteByte(0x19, 0x2a);

			// RegDioMapping1
			rfm69Device.RegisterWriteByte(0x26, 0x01);

			// Setup preamble length to 16 (default is 3) RegPreambleMsb RegPreambleLsb
			rfm69Device.RegisterWriteByte(0x2C, 0x0);
			rfm69Device.RegisterWriteByte(0x2D, 0x10);

			// RegSyncConfig Set the Sync length and byte values SyncOn + 3 custom sync bytes
			rfm69Device.RegisterWriteByte(0x2e, 0x90);

			// RegSyncValues1 thru RegSyncValues3
			rfm69Device.RegisterWriteByte(0x2f, 0xAA);
			rfm69Device.RegisterWriteByte(0x30, 0x2D);
			rfm69Device.RegisterWriteByte(0x31, 0xD4);

			// RegPacketConfig1 Variable length with CRC on
			rfm69Device.RegisterWriteByte(0x37, 0x90);

			// Set the AES key and turn on AES RegPacketConfig2
			rfm69Device.RegisterWriteByte(0x3D, 0x03);
	
			rfm69Device.RegisterWriteByte(0x3E, 0x00);
			rfm69Device.RegisterWriteByte(0x3F, 0x01);
			rfm69Device.RegisterWriteByte(0x40, 0x02);
			rfm69Device.RegisterWriteByte(0x41, 0x03);
			rfm69Device.RegisterWriteByte(0x42, 0x04);
			rfm69Device.RegisterWriteByte(0x43, 0x05);
			rfm69Device.RegisterWriteByte(0x44, 0x06);
			rfm69Device.RegisterWriteByte(0x45, 0x07);
			rfm69Device.RegisterWriteByte(0x46, 0x08);
			rfm69Device.RegisterWriteByte(0x47, 0x09);
			rfm69Device.RegisterWriteByte(0x48, 0x0A);
			rfm69Device.RegisterWriteByte(0x49, 0x0B);
			rfm69Device.RegisterWriteByte(0x4A, 0x0C);
			rfm69Device.RegisterWriteByte(0x4B, 0x0D);
			rfm69Device.RegisterWriteByte(0x4C, 0x0E);
			rfm69Device.RegisterWriteByte(0x4D, 0x0F);
			
/*
			// Clear out the AES key
			rfm69Device.RegisterWriteByte(0x3E, 0x0);
			rfm69Device.RegisterWriteByte(0x3F, 0x0);
			rfm69Device.RegisterWriteByte(0x40, 0x0);
			rfm69Device.RegisterWriteByte(0x41, 0x0);
			rfm69Device.RegisterWriteByte(0x42, 0x0);
			rfm69Device.RegisterWriteByte(0x43, 0x0);
			rfm69Device.RegisterWriteByte(0x44, 0x0);
			rfm69Device.RegisterWriteByte(0x45, 0x0);
			rfm69Device.RegisterWriteByte(0x46, 0x0);
			rfm69Device.RegisterWriteByte(0x47, 0x0);
			rfm69Device.RegisterWriteByte(0x48, 0x0);
			rfm69Device.RegisterWriteByte(0x49, 0x0);
			rfm69Device.RegisterWriteByte(0x4A, 0x0);
			rfm69Device.RegisterWriteByte(0x4B, 0x0);
			rfm69Device.RegisterWriteByte(0x4C, 0x0);
			rfm69Device.RegisterWriteByte(0x4D, 0x0);
*/			

			rfm69Device.RegisterDump();

			while (true)
			{
				// Standby mode while loading message into FIFO
				rfm69Device.RegisterWriteByte(0x01, 0b00000100);

				byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes("hello world " + DateTime.Now.ToLongTimeString());
				rfm69Device.RegisterWriteByte(0x0, (byte)messageBuffer.Length);
				rfm69Device.RegisterWrite(0x0, messageBuffer);

				// Transmit mode once FIFO loaded
				rfm69Device.RegisterWriteByte(0x01, 0b00001100);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

				Task.Delay(5000).Wait();
			}
		}
	}
}

I could see inbound messages from the transmit Arduino and Windows 10 device interleaved on the receive Arduino.

21:06:12.735 -> RX start
21:06:12.735 -> 0x0: 0x0
21:06:12.769 -> 0x1: 0x10
21:06:12.769 -> 0x2: 0x0
…
21:06:13.453 -> 0x3B: 0x0
21:06:13.453 -> 0x3C: 0x1
21:06:13.487 -> 0x3D: 0x1
21:06:15.218 -> MessageIn:hello world 9:06:15 PM
21:06:20.317 -> MessageIn:hello world 9:06:20 PM
21:06:24.559 -> MessageIn:Hello world:0
21:06:25.384 -> MessageIn:hello world 9:06:25 PM
21:06:28.009 -> MessageIn:Hello world:1
21:06:30.454 -> MessageIn:hello world 9:06:30 PM
21:06:31.455 -> MessageIn:Hello world:2
21:06:34.939 -> MessageIn:Hello world:3
21:06:35.596 -> MessageIn:hello world 9:06:35 PM
21:06:38.389 -> MessageIn:Hello world:4
21:06:40.666 -> MessageIn:hello world 9:06:40 PM
21:06:41.838 -> MessageIn:Hello world:5
21:06:45.316 -> MessageIn:Hello world:6
21:06:45.731 -> MessageIn:hello world 9:06:45 PM
21:06:48.761 -> MessageIn:Hello world:7
21:06:50.799 -> MessageIn:hello world 9:06:50 PM
21:06:52.214 -> MessageIn:Hello world:8

The next step will be merging and refactoring the test harness to extract the code for accessing the RFM69 registers into a separate class, then defining enumerations and constants for all the RFM69 settings.

RFM69 hat library Part9

Addressing: Rasmatic/RFM69-Arduino-Library

The RFM69CW/RFM69HCW modules (based on the Semtech SX1231/SX1231H) have built in support for addressing individual devices (register RegNodeAdrs 0x39) or broadcasting to groups of devices (register RegBroadcastAdrs 0x3A). In this test harness I’m exploring the RFM69 device support for these two different addressing modes which is configured in RegPacketConfig1 0x37.

RFM69 Address filtering options

The fixed length packet format contains the following fields

  • Preamble (1010…)
  • Sync word (Network ID)
  • Optional Address byte (Node ID)
  • Message data
  • Optional 2-bytes CRC checksum
Fixed length packet format

The variable length packet format contains the following fields

  • Preamble (1010…)
  • Sync word (Network ID)
  • Length byte
  • Optional Address byte (Node ID)
  • Message data
  • Optional 2-bytes CRC checksum
Variable length packet format

My first attempt at addressing was by modifying the payload (the extra space at the start of the payload was replaced by the target device address)

void loop() 
{
  char messageIn[128] = {""};
  char messageOut[32]= {" Hello world:"};

  if (digitalRead(SENDER_DETECT_PIN) == LOW)
  {
    if(radio.bGetMessage(messageIn)!=0)
    { 
      Serial.print("MessageIn:");
      Serial.println(messageIn);
    }    
  }
  else
  {  
    Serial.print("MessageOut:") ;
    itoa(counter,&messageOut[strlen(messageOut)],10);
    Serial.print("(");
    Serial.print(messageOut);
    Serial.println(")");
    Serial.print("Length:") ;
    Serial.println(strlen(messageOut));

    messageOut[0]=0x99;
    if (!radio.bSendMessage(messageOut, strlen(messageOut)))
    {
      Serial.println("bSendMessage failed");
    }
    counter++;
    delay(1000);
  }

The rasmatic/RFM69-Arduino-Library doesn’t natively support sending addressed payloads so I had to add a method to test my Windows 10 IoT Core client.

Initially it truncated messages because I neglected to include the byte with the length of the message in the length of the message. I also had to extend the timeout for sending a message a bit more than I expected for one extra byte.

bool RMRFM69::bSendMessage(byte address, byte msg[], byte length)
{
byte tmp;
 uint32_t overtime;
 word bittime;

 switch(COB)
	{
	case RFM65:									//only for Rx
	case RFM65C:
		return(false);
	case RFM69H:
	case RFM69HC:
 		vSpiWrite(((word)RegTestPa1<<8)+0x5D);		//for HighPower
	 	vSpiWrite(((word)RegTestPa2<<8)+0x7C);
		break;
	default:
	case RFM69:
	case RFM69C:
	 	vSpiWrite(((word)RegTestPa1<<8)+0x55);		//for NormalMode or RxMode
 		vSpiWrite(((word)RegTestPa2<<8)+0x70);
		break;
	}
	
 vSpiWrite(((word)RegDioMapping1<<8)+0x04);	//DIO0 PacketSend  / DIO1 FiflLevel / DIO2 Data /DIO3 FifoFull
 
 if(!FixedPktLength)
 	vSpiWrite(((word)RegFifo<<8)+length+1);
 vSpiWrite(((word)RegFifo<<8)+address);
 
 vSpiBurstWrite(RegFifo, msg, length);
 
 tmp = bSpiRead(RegOpMode);
 tmp&= MODE_MASK;
 tmp |= RADIO_TX;
 vSpiWrite(((word)RegOpMode<<8)+tmp);
  
 //�ȴ��������
 bittime  = SymbolTime/1000;		//unit: us
 overtime = SyncLength+PreambleLength+length+1;
 if(!FixedPktLength)				//SyncWord & PktLength & 2ByteCRC
    overtime += 1;
 if(!CrcDisable)
 	overtime += 2;
 overtime<<=3;					//8bit == 1byte
 overtime*= bittime;
 overtime/= 1000;				//unit: ms
 if(overtime==0) 
 	overtime = 1;
 overtime += (overtime>>3);		//add 12.5% for ensure
 delay(overtime);			//
 for(tmp=0;tmp<1000;tmp++)		//about 50ms for overtime
 	{
 	if(digitalRead(_dio0Pin))
 		break; 	
 	delayMicroseconds(500);
 	}
 vGoStandby();	
 if(tmp>=200)
 	return(false);
 else
 	return(true);
}

The Windows 10 IoT Core library interrupt handler needed some modification to display message only when the address matched and I also displayed the targeted address so I could check that device and broadcast addressing was working

/*
    Copyright ® 2019 July devMobile Software, All Rights Reserved

	 MIT License

	 Permission is hereby granted, free of charge, to any person obtaining a copy
	 of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
	 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all
	 copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
	 SOFTWARE

 */
namespace devMobile.IoT.Rfm69Hcw.Addressing
{
	using System;
	using System.Diagnostics;
	using System.Runtime.InteropServices.WindowsRuntime;
	using System.Text;
	using System.Threading.Tasks;
	using Windows.ApplicationModel.Background;
	using Windows.Devices.Gpio;
	using Windows.Devices.Spi;

	public sealed class Rfm69HcwDevice
	{
		private SpiDevice Rfm69Hcw;
		private GpioPin InterruptGpioPin = null;
		private const byte RegisterAddressReadMask = 0X7f;
		private const byte RegisterAddressWriteMask = 0x80;

		public Rfm69HcwDevice(int chipSelectPin, int resetPin, int interruptPin)
		{
			SpiController spiController = SpiController.GetDefaultAsync().AsTask().GetAwaiter().GetResult();
			var settings = new SpiConnectionSettings(chipSelectPin)
			{
				ClockFrequency = 500000,
				Mode = SpiMode.Mode0,
			};

			// Factory reset pin configuration
			GpioController gpioController = GpioController.GetDefault();
			GpioPin resetGpioPin = gpioController.OpenPin(resetPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Output);
			resetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			resetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Interrupt pin for RX message & TX done notification 
			InterruptGpioPin = gpioController.OpenPin(interruptPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Input);

			InterruptGpioPin.ValueChanged += InterruptGpioPin_ValueChanged;

			Rfm69Hcw = spiController.GetDevice(settings);
		}

		private void InterruptGpioPin_ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs args)
		{
			if (args.Edge != GpioPinEdge.RisingEdge)
			{
				return;
			}

			byte irqFlags2 = this.RegisterReadByte(0x28); // RegIrqFlags2
			Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags2 {1}", DateTime.Now, Convert.ToString((byte)irqFlags2, 2).PadLeft(8, '0'));
			if ((irqFlags2 & 0b00000100) == 0b00000100)  // PayLoadReady set
			{
				byte irqFlags1 = this.RegisterReadByte(0x27); // RegIrqFlags1

				// Read the length of the buffer
				byte numberOfBytes = this.RegisterReadByte(0x0);

				Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags1 {1}", DateTime.Now, Convert.ToString((byte)irqFlags1, 2).PadLeft(8, '0'));
				if ((irqFlags1 & 0b00000001) == 0b00000001)  // SyncAddressMatch
				{
					byte address = this.RegisterReadByte(0x0);
					Debug.WriteLine("{0:HH:mm:ss.fff} Address 0X{1:X2} b{2}", DateTime.Now, address, Convert.ToString((byte)address, 2).PadLeft(8, '0'));
					numberOfBytes--;
				}

				// Allocate buffer for message
				byte[] messageBytes = new byte[numberOfBytes];

				for (int i = 0; i < numberOfBytes; i++)
				{
					messageBytes[i] = this.RegisterReadByte(0x00); // RegFifo
				}

				string messageText = UTF8Encoding.UTF8.GetString(messageBytes);
				Debug.WriteLine("{0:HH:mm:ss} Received:{1} byte message({2})", DateTime.Now, messageBytes.Length, messageText);
			}

			if ((irqFlags2 & 0b00001000) == 0b00001000)  // PacketSent set
			{
				this.RegisterWriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode
				Debug.WriteLine("{0:HH:mm:ss.fff} Transmit-Done", DateTime.Now);
			}
		}

		public Byte RegisterReadByte(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[1];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer[0];
		}

		public byte[] RegisterRead(byte address, int length)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[length];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer;
		}

		public void RegisterWriteByte(byte address, byte value)
		{
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, value };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterWrite(byte address, [ReadOnlyArray()] byte[] bytes)
		{
			byte[] writeBuffer = new byte[1 + bytes.Length];
			Debug.Assert(Rfm69Hcw != null);

			Array.Copy(bytes, 0, writeBuffer, 1, bytes.Length);
			writeBuffer[0] = address |= RegisterAddressWriteMask;

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterDump()
		{
			Debug.WriteLine("Register dump");
			for (byte registerIndex = 0; registerIndex <= 0x3D; registerIndex++)
			{
				byte registerValue = this.RegisterReadByte(registerIndex);

				Debug.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
			}
		}
	}

	public sealed class StartupTask : IBackgroundTask
	{
		private const int ChipSelectLine = 1;
		private const int ResetPin = 25;
		private const int InterruptPin = 22;
		private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectLine, ResetPin, InterruptPin);

		const double RH_RF6M9HCW_FXOSC = 32000000.0;
		const double RH_RFM69HCW_FSTEP = RH_RF6M9HCW_FXOSC / 524288.0;

		public void Run(IBackgroundTaskInstance taskInstance)
		{
			//rfm69Device.RegisterDump();

			// regOpMode standby
			rfm69Device.RegisterWriteByte(0x01, 0b00000100);

			// BitRate MSB/LSB
			rfm69Device.RegisterWriteByte(0x03, 0x34);
			rfm69Device.RegisterWriteByte(0x04, 0x00);

			// Frequency deviation
			rfm69Device.RegisterWriteByte(0x05, 0x02);
			rfm69Device.RegisterWriteByte(0x06, 0x3d);

			// Calculate the frequency accoring to the datasheett
			byte[] bytes = BitConverter.GetBytes((uint)(915000000.0 / RH_RFM69HCW_FSTEP));
			Debug.WriteLine("Byte Hex 0x{0:x2} 0x{1:x2} 0x{2:x2} 0x{3:x2}", bytes[0], bytes[1], bytes[2], bytes[3]);
			rfm69Device.RegisterWriteByte(0x07, bytes[2]);
			rfm69Device.RegisterWriteByte(0x08, bytes[1]);
			rfm69Device.RegisterWriteByte(0x09, bytes[0]);

			// RegRxBW
			rfm69Device.RegisterWriteByte(0x19, 0x2a);

			// RegDioMapping1
			rfm69Device.RegisterWriteByte(0x26, 0x01);

			// Setup preamble length to 16 (default is 3) RegPreambleMsb RegPreambleLsb
			rfm69Device.RegisterWriteByte(0x2C, 0x0);
			rfm69Device.RegisterWriteByte(0x2D, 0x10);

			// RegSyncConfig Set the Sync length and byte values SyncOn + 3 custom sync bytes
			rfm69Device.RegisterWriteByte(0x2e, 0x90);

			// RegSyncValues1 thru RegSyncValues3
			rfm69Device.RegisterWriteByte(0x2f, 0xAA);
			rfm69Device.RegisterWriteByte(0x30, 0x2D);
			rfm69Device.RegisterWriteByte(0x31, 0xD4);

			// RegPacketConfig1 Variable length with CRC on
			//rfm69Device.RegisterWriteByte(0x37, 0x90);

			// RegPacketConfig1 Variable length with CRC on + NodeAddress
			//rfm69Device.RegisterWriteByte(0x37, 0x92);

			// RegPacketConfig1 Variable length with CRC on + NodeAddress & Broadcast Address
			rfm69Device.RegisterWriteByte(0x37, 0x94);

			// RegNodeAdrs 
			rfm69Device.RegisterWriteByte(0x39, 0x99);

			// RegBroadcastAdrs
			rfm69Device.RegisterWriteByte(0x3A, 0x66);

			rfm69Device.RegisterDump();

			rfm69Device.RegisterWriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode

			while (true)
			{
				Debug.Write(".");

				Task.Delay(1000).Wait();
			}
		}
	}
}

The debug output window shows the flags and messages

Register dump
Register 0x00 - Value 0X00 - Bits 00000000
Register 0x01 - Value 0X04 - Bits 00000100
Register 0x02 - Value 0X00 - Bits 00000000
…
Register 0x3b - Value 0X00 - Bits 00000000
Register 0x3c - Value 0X0f - Bits 00001111
Register 0x3d - Value 0X02 - Bits 00000010
...........
15:58:16.931 RegIrqFlags2 01100110
15:58:17.096 RegIrqFlags1 11011001
15:58:17.118 Address 0X99 b10011001
15:58:17 Received:14 byte message( Hello world:0)
.15:58:18.009 RegIrqFlags2 01100110
15:58:18.024 RegIrqFlags1 11011001
15:58:18.039 Address 0X99 b10011001
15:58:18 Received:14 byte message( Hello world:1)
.15:58:19.146 RegIrqFlags2 01100110
15:58:19.161 RegIrqFlags1 11011001
15:58:19.176 Address 0X99 b10011001
15:58:19 Received:14 byte message( Hello world:2)
.15:58:20.284 RegIrqFlags2 01100110
15:58:20.299 RegIrqFlags1 11011001
15:58:20.313 Address 0X99 b10011001
15:58:20 Received:14 byte message( Hello world:3)
.15:58:21.421 RegIrqFlags2 01100110
.15:58:21.454 RegIrqFlags1 11011001
15:58:21.469 Address 0X99 b10011001
15:58:21 Received:14 byte message( Hello world:4)
....

The next steps will be getting the RFM69 message encryption going, then building a fully featured library based on the code in each of individual test harnesses.

RFM69 hat library Part8

ReceiveTransmit Interrupt: Rasmatic/RFM69-Arduino-Library

I started by merging the transmit and receive interrupt samples, taking into account the simplex RFM69HCW radio link. I modified the code in the interrupt handler to process receive and transmit interrupts based on bit flags set in RegIrqFlags2.

The receive interrupt handler loads the inbound message (Need to set CRC checking flag) into a buffer for display. The transmit interrupt handler sets RegOpMode to receive mode and enables PayloadReady interrupts as soon as the outbound message had been sent.

/*
    Copyright ® 2019 July devMobile Software, All Rights Reserved

	 MIT License

	 Permission is hereby granted, free of charge, to any person obtaining a copy
	 of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
	 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all
	 copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
	 SOFTWARE

 */
namespace devMobile.IoT.Rfm69Hcw.ReceiveTransmitInterrupt
{
	using System;
	using System.Diagnostics;
	using System.Runtime.InteropServices.WindowsRuntime;
	using System.Text;
	using System.Threading.Tasks;
	using Windows.ApplicationModel.Background;
	using Windows.Devices.Gpio;
	using Windows.Devices.Spi;

	public sealed class Rfm69HcwDevice
	{
		private SpiDevice Rfm69Hcw;
		private GpioPin InterruptGpioPin = null;
		private const byte RegisterAddressReadMask = 0X7f;
		private const byte RegisterAddressWriteMask = 0x80;

		public Rfm69HcwDevice(int chipSelectPin, int resetPin, int interruptPin)
		{
			SpiController spiController = SpiController.GetDefaultAsync().AsTask().GetAwaiter().GetResult();
			var settings = new SpiConnectionSettings(chipSelectPin)
			{
				ClockFrequency = 500000,
				Mode = SpiMode.Mode0,
			};

			// Factory reset pin configuration
			GpioController gpioController = GpioController.GetDefault();
			GpioPin resetGpioPin = gpioController.OpenPin(resetPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Output);
			resetGpioPin.Write(GpioPinValue.High);
			Task.Delay(100);
			resetGpioPin.Write(GpioPinValue.Low);
			Task.Delay(10);

			// Interrupt pin for RX message & TX done notification 
			InterruptGpioPin = gpioController.OpenPin(interruptPin);
			resetGpioPin.SetDriveMode(GpioPinDriveMode.Input);

			InterruptGpioPin.ValueChanged += InterruptGpioPin_ValueChanged;

			Rfm69Hcw = spiController.GetDevice(settings);
		}

		private void InterruptGpioPin_ValueChanged(GpioPin sender, GpioPinValueChangedEventArgs args)
		{
			if (args.Edge != GpioPinEdge.RisingEdge)
			{
				return;
			}

			byte irqFlags = this.RegisterReadByte(0x28); // RegIrqFlags2
			Debug.WriteLine("{0:HH:mm:ss.fff} RegIrqFlags {1}", DateTime.Now, Convert.ToString((byte)irqFlags, 2).PadLeft(8, '0'));
			if ((irqFlags & 0b00000100) == 0b00000100)  // PayLoadReady set
			{
				// Read the length of the buffer
				byte numberOfBytes = this.RegisterReadByte(0x0);

				// Allocate buffer for message
				byte[] messageBytes = new byte[numberOfBytes];

				for (int i = 0; i < numberOfBytes; i++)
				{
					messageBytes[i] = this.RegisterReadByte(0x00); // RegFifo
				}

				string messageText = UTF8Encoding.UTF8.GetString(messageBytes);
				Debug.WriteLine("{0:HH:mm:ss} Received {1} byte message {2}", DateTime.Now, messageBytes.Length, messageText);
			}

			if ((irqFlags & 0b00001000) == 0b00001000)  // PacketSent set
			{
				this.RegisterWriteByte(0x01, 0b00010000); // RegOpMode set ReceiveMode
				Debug.WriteLine("{0:HH:mm:ss.fff} Transmit-Done", DateTime.Now);
			}
		}

		public Byte RegisterReadByte(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[1];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return readBuffer[0];
		}

		public ushort RegisterReadWord(byte address)
		{
			byte[] writeBuffer = new byte[] { address &= RegisterAddressReadMask };
			byte[] readBuffer = new byte[2];
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.TransferSequential(writeBuffer, readBuffer);

			return (ushort)(readBuffer[1] + (readBuffer[0] << 8));
		}

		public void RegisterWriteByte(byte address, byte value)
		{
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, value };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterWriteWord(byte address, ushort value)
		{
			byte[] valueBytes = BitConverter.GetBytes(value);
			byte[] writeBuffer = new byte[] { address |= RegisterAddressWriteMask, valueBytes[0], valueBytes[1] };
			Debug.Assert(Rfm69Hcw != null);

			Rfm69Hcw.Write(writeBuffer);
		}

		public void RegisterDump()
		{
			Debug.WriteLine("Register dump");
			for (byte registerIndex = 0; registerIndex <= 0x3D; registerIndex++)
			{
				byte registerValue = this.RegisterReadByte(registerIndex);

				Debug.WriteLine("Register 0x{0:x2} - Value 0X{1:x2} - Bits {2}", registerIndex, registerValue, Convert.ToString(registerValue, 2).PadLeft(8, '0'));
			}
		}
	}


	public sealed class StartupTask : IBackgroundTask
	{
		private const int ChipSelectLine = 1;
		private const int ResetPin = 25;
		private const int InterruptPin = 22;
		private Rfm69HcwDevice rfm69Device = new Rfm69HcwDevice(ChipSelectLine, ResetPin, InterruptPin);

		const double RH_RF6M9HCW_FXOSC = 32000000.0;
		const double RH_RFM69HCW_FSTEP = RH_RF6M9HCW_FXOSC / 524288.0;

		public void Run(IBackgroundTaskInstance taskInstance)
		{
			//rfm69Device.RegisterDump();

			// regOpMode standby
			rfm69Device.RegisterWriteByte(0x01, 0b00000100);

			// BitRate MSB/LSB
			rfm69Device.RegisterWriteByte(0x03, 0x34);
			rfm69Device.RegisterWriteByte(0x04, 0x00);

			// Frequency deviation
			rfm69Device.RegisterWriteByte(0x05, 0x02);
			rfm69Device.RegisterWriteByte(0x06, 0x3d);

			// Calculate the frequency accoring to the datasheett
			byte[] bytes = BitConverter.GetBytes((uint)(915000000.0 / RH_RFM69HCW_FSTEP));
			Debug.WriteLine("Byte Hex 0x{0:x2} 0x{1:x2} 0x{2:x2} 0x{3:x2}", bytes[0], bytes[1], bytes[2], bytes[3]);
			rfm69Device.RegisterWriteByte(0x07, bytes[2]);
			rfm69Device.RegisterWriteByte(0x08, bytes[1]);
			rfm69Device.RegisterWriteByte(0x09, bytes[0]);

			// RegRxBW
			rfm69Device.RegisterWriteByte(0x19, 0x2a);

			// RegDioMapping1
			rfm69Device.RegisterWriteByte(0x26, 0x01);

			// Setup preamble length to 16 (default is 3) RegPreambleMsb RegPreambleLsb
			rfm69Device.RegisterWriteByte(0x2C, 0x0);
			rfm69Device.RegisterWriteByte(0x2D, 0x10);

			// RegSyncConfig Set the Sync length and byte values SyncOn + 3 custom sync bytes
			rfm69Device.RegisterWriteByte(0x2e, 0x90);

			// RegSyncValues1 thru RegSyncValues3
			rfm69Device.RegisterWriteByte(0x2f, 0xAA);
			rfm69Device.RegisterWriteByte(0x30, 0x2D);
			rfm69Device.RegisterWriteByte(0x31, 0xD4);

			// RegPacketConfig1 Variable length with CRC on
			rfm69Device.RegisterWriteByte(0x37, 0x90);

			rfm69Device.RegisterDump();

			while (true)
			{
				// Standby mode while loading message into FIFO
				rfm69Device.RegisterWriteByte(0x01, 0b00000100);

				byte[] messageBuffer = UTF8Encoding.UTF8.GetBytes("hello world " + DateTime.Now.ToLongTimeString());
				rfm69Device.RegisterWriteByte(0x0, (byte)messageBuffer.Length);
				rfm69Device.RegisterWrite(0x0, messageBuffer);

				// Transmit mode once FIFO loaded
				rfm69Device.RegisterWriteByte(0x01, 0b00001100);

				Debug.WriteLine("{0:HH:mm:ss.fff} Send-Done", DateTime.Now);

				Task.Delay(5000).Wait();
			}
		}
	}
}

Arduino based transmit and receive test rig

I used the same Arduino devices and code as my receive and transmit samples. After sorting out the timing for enabling receive mode on the Windows 10IoT Core the transmission and receiving of packets was reliable (as long as two devices weren’t transmitting at the same time).

Byte Hex 0x00 0xc0 0xe4 0x00
Register dump
Register 0x00 - Value 0X00 - Bits 00000000
Register 0x01 - Value 0X04 - Bits 00000100
Register 0x02 - Value 0X00 - Bits 00000000
…
Register 0x3b - Value 0X00 - Bits 00000000
Register 0x3c - Value 0X0f - Bits 00001111
Register 0x3d - Value 0X02 - Bits 00000010
20:20:14.952 Send-Done
20:20:15.146 RegIrqFlags 00001000
20:20:15.160 Transmit-Done
20:20:15.298 RegIrqFlags 01000110
20:20:15 Received 14 byte message Hello world:89
20:20:17.429 RegIrqFlags 01000110
20:20:17 Received 14 byte message Hello world:90
The thread 0x1658 has exited with code 0 (0x0).
The thread 0x15cc has exited with code 0 (0x0).
20:20:19.560 RegIrqFlags 01000110
20:20:19 Received 14 byte message Hello world:91
20:20:20.031 Send-Done
20:20:20.178 RegIrqFlags 00001000
20:20:20.194 Transmit-Done

The above trace is from the Windows 10 IoT Core device as it transmits and receives messages.

20:24:36.311 -> RX start
20:24:36.345 -> 0x0: 0x0
20:24:36.345 -> 0x1: 0x10
20:24:36.345 -> 0x2: 0x0
20:24:36.380 -> 0x3: 0x34
...
20:24:37.028 -> 0x3B: 0x0
20:24:37.028 -> 0x3C: 0x1
20:24:37.063 -> 0x3D: 0x0
20:24:38.024 -> MessageIn:Hello world:212
20:24:38.848 -> MessageIn:hello world 8:24:38 PM
20:24:40.156 -> MessageIn:Hello world:213
20:24:42.293 -> MessageIn:Hello world:214
20:24:43.914 -> MessageIn:hello world 8:24:43 PM
20:24:44.427 -> MessageIn:Hello world:215
20:24:46.567 -> MessageIn:Hello world:216
20:24:48.674 -> MessageIn:Hello world:217
20:24:48.984 -> MessageIn:hello world 8:24:48 PM
20:24:50.841 -> MessageIn:Hello world:218
20:24:52.943 -> MessageIn:Hello world:219
20:24:54.044 -> MessageIn:hello world 8:24:53 PM
20:24:55.100 -> MessageIn:Hello world:220
20:24:57.235 -> MessageIn:Hello world:221
20:24:59.133 -> MessageIn:hello world 8:24:58 PM
20:24:59.377 -> MessageIn:Hello world:222
20:25:01.496 -> MessageIn:Hello world:223
20:25:03.655 -> MessageIn:Hello world:224
20:25:04.176 -> MessageIn:hello world 8:25:04 PM
20:25:05.777 -> MessageIn:Hello world:225
20:25:07.927 -> MessageIn:Hello world:226
20:25:09.281 -> MessageIn:hello world 8:25:09 PM
20:25:10.048 -> MessageIn:Hello world:227
20:25:12.208 -> MessageIn:Hello world:228
20:25:14.352 -> MessageIn:hello world 8:25:14 PM

The above trace is from the Arduino device configured to receive messages and it is receiving messages from the Windows 10 IoT Core device and the other Arduino.