Building Edge AI with Copilot-ResNet50 Client

Introduction

This is an awfully long post about my experience using Copilot to write a console application that runs a validated resnet50 V2.7 Open Neural Network Exchange model(ONNX) on an image loaded from disk.

I have found that often Copilot code generation is “better” but the user interface can be limiting.

The Copilot code generated compiled after the System.Drawing.Common and Microsoft.ML.OnnxRuntime NuGet packages were added to the project.

Input
All pre-trained models expect input images normalized in the same way, i.e. mini-batches 
of 3-channel RGB images of shape (N x 3 x H x W), where N is the batch size, and H and 
W are expected to be at least 224. The inference was done using jpeg image.

Preprocessing
The image needs to be preprocessed before fed to the network. The first step is to 
extract a 224x224 crop from the center of the image. For this, the image is first scaled 
to a minimum size of 256x256, while keeping aspect ratio. That is, the shortest side 
of the image is resized to 256 and the other side is scaled accordingly to maintain 
the original aspect ratio. 

After that, the image is normalized with mean = 255*[0.485, 0.456, 0.406] and std 
= 255*[0.229, 0.224, 0.225]. Last step is to transpose it from HWC to CHW layout.

The code also had a reasonable implementation of the ResnetV5 preprocessing instructions

static void Main()
{
   string modelPath = "resnet50-v2-7.onnx"; // Path to your ONNX model
   string imagePath = "pizza.jpg"; // Path to the input image

   using var session = new InferenceSession(modelPath);
   var inputTensor = LoadAndPreprocessImage(imagePath);

   var inputs = new List<NamedOnnxValue>
   {
       NamedOnnxValue.CreateFromTensor("input", inputTensor)
   };

   using var results = session.Run(inputs);
   var output = results.First().AsTensor<float>().ToArray();

   Console.WriteLine("Predicted class index: " + Array.IndexOf(output, output.Max()));
}

static DenseTensor<float> LoadAndPreprocessImage(string imagePath)
{
   using Bitmap bitmap = new Bitmap(imagePath);
   int width = 224, height = 224; // ResNet50 expects 224x224 input
   using Bitmap resized = new Bitmap(bitmap, new Size(width, height));

   var tensor = new DenseTensor<float>(new[] { 1, 3, width, height });
   for (int y = 0; y < height; y++)
   {
      for (int x = 0; x < width; x++)
      {
         Color pixel = resized.GetPixel(x, y);
         tensor[0, 0, y, x] = pixel.R / 255f; // Normalize
         tensor[0, 1, y, x] = pixel.G / 255f;
         tensor[0, 2, y, x] = pixel.B / 255f;
      }
   }
   return tensor;
}

The program ran but failed with a Microsoft.ML.OnnxRuntime.OnnxRuntimeException Message=[ErrorCode:InvalidArgument] Input name: ‘input’ is not in the metadata

The name of the input tensor was wrong, so I used Netron to inspect the graph properties of the model.

After the input tensor name was updated, the program ran

I checked the labels using the torchvison ImageNet categories and the results looked reasonable

The model and input file paths were wrong and I had been manually fixing them.

The confidence values didn’t look right so I re-read the preprocessing requirements for a ResNet model

Input
All pre-trained models expect input images normalized in the same way, i.e. mini-batches 
of 3-channel RGB images of shape (N x 3 x H x W), where N is the batch size, and H and 
W are expected to be at least 224. The inference was done using jpeg image.

Preprocessing
The image needs to be preprocessed before fed to the network. The first step is to 
extract a 224x224 crop from the center of the image. For this, the image is first scaled 
to a minimum size of 256x256, while keeping aspect ratio. That is, the shortest side 
of the image is resized to 256 and the other side is scaled accordingly to maintain 
the original aspect ratio. 

After that, the image is normalized with mean = 255*[0.485, 0.456, 0.406] and std 
= 255*[0.229, 0.224, 0.225]. Last step is to transpose it from HWC to CHW layout.

The Copilot generated code compiled and ran but the confidence values still didn’t look right, and the results tensor contained 1000 confidences values.

static void Main()
{
   string modelPath = "resnet50-v2-7.onnx"; // Updated model path
   string imagePath = "pizza.jpg"; // Updated image path

   using var session = new InferenceSession(modelPath);
   var inputTensor = LoadAndPreprocessImage(imagePath);

   var inputs = new List<NamedOnnxValue>
   {
      NamedOnnxValue.CreateFromTensor("data", inputTensor) // Using "data" as the input tensor name
   };

   using var results = session.Run(inputs);
   var output = results.First().AsTensor<float>().ToArray();

   Console.WriteLine("Predicted class index: " + Array.IndexOf(output, output.Max()));
}

static DenseTensor<float> LoadAndPreprocessImage(string imagePath)
{
   using Bitmap bitmap = new Bitmap(imagePath);
   int width = 224, height = 224; // ResNet50 expects 224x224 input
   using Bitmap resized = new Bitmap(bitmap, new Size(width, height));

   var tensor = new DenseTensor<float>(new[] { 1, 3, width, height });

   // ImageNet mean & standard deviation values
   float[] mean = { 0.485f, 0.456f, 0.406f };
   float[] stdev = { 0.229f, 0.224f, 0.225f };

   for (int y = 0; y < height; y++)
   {
      for (int x = 0; x < width; x++)
      {
         Color pixel = resized.GetPixel(x, y);

         // Normalize using mean and standard deviation
         tensor[0, 0, y, x] = (pixel.R / 255f - mean[0]) / stdev[0]; // Red channel
         tensor[0, 1, y, x] = (pixel.G / 255f - mean[1]) / stdev[1]; // Green channel
         tensor[0, 2, y, x] = (pixel.B / 255f - mean[2]) / stdev[2]; // Blue channel
      }
   }
   return tensor;
}

Because the results didn’t look right, I went back and read the ResNet50 post processing instructions

Output
The model outputs image scores for each of the 1000 classes of ImageNet.

Postprocessing
The post-processing involves calculating the softmax probability scores for each 
class. You can also sort them to report the most probable classes. Check 
imagenet_postprocess.py for code.

The Copilot generated code wouldn’t compile due to a syntax error.

static void Main()
{
   string modelPath = "resnet50-v2-7.onnx"; // Updated model path
   string imagePath = "pizza.jpg"; // Updated image path

   using var session = new InferenceSession(modelPath);
   var inputTensor = LoadAndPreprocessImage(imagePath);

   var inputs = new List<NamedOnnxValue>
   {
      NamedOnnxValue.CreateFromTensor("data", inputTensor) // Using "data" as the input tensor name
   };

   using var results = session.Run(inputs);
   var output = results.First().AsTensor<float>().ToArray();

   // Calculate softmax
   var probabilities = Softmax(output);

   // Get the class index with the highest probability
   int predictedClass = Array.IndexOf(probabilities, probabilities.Max());
   Console.WriteLine($"Predicted class index: {predictedClass}");
   Console.WriteLine($"Probabilities: {string.Join(", ", probabilities.Select(p => p.ToString("F4")))}");
}
...
static float[] Softmax(float[] logits)
{
   // Compute softmax
   var expScores = logits.Select(Math.Exp).ToArray();
   double sumExpScores = expScores.Sum();
   return expScores.Select(score => (float)(score / sumExpScores)).ToArray();
}

Copilot was adamant that the generated code was correct.

After trying different Copilot prompts the code had to be manually fixed, before it would compile

The Copilot generated code ran and the results for the top 10 confidence values looked reasonable

static void Main()
{
   string modelPath = "resnet50-v2-7.onnx"; // Updated model path
   string imagePath = "pizza.jpg"; // Updated image path
   string labelsPath = "labels.txt"; // Path to labels file

   using var session = new InferenceSession(modelPath);
   var inputTensor = LoadAndPreprocessImage(imagePath);

   var inputs = new List<NamedOnnxValue>
   {
       NamedOnnxValue.CreateFromTensor("data", inputTensor) // Using "data" as the input tensor name
   };

   using var results = session.Run(inputs);
   var output = results.First().AsTensor<float>().ToArray();

   // Calculate softmax
   var probabilities = Softmax(output);

   // Load labels
   var labels = File.ReadAllLines(labelsPath);

   // Find Top 10 labels and their confidence scores
   var top10 = probabilities
          .Select((prob, index) => new { Label = labels[index], Confidence = prob })
          .OrderByDescending(item => item.Confidence)
          .Take(10);

   Console.WriteLine("Top 10 Predictions:");
   foreach (var item in top10)
   {
      Console.WriteLine($"{item.Label}: {item.Confidence:F4}");
   }
}
...
static float[] Softmax(float[] logits)
{
   // Compute softmax
   float maxVal = logits.Max();
   var expScores = logits.Select(v => (float)Math.Exp(v - maxVal)).ToArray();
   double sumExpScores = expScores.Sum();
   return expScores.Select(score => (float)(score / sumExpScores)).ToArray();
}

The code will have to run on non-windows devices for System.Drawing.Common had to replaced with SixLabors ImageSharp a multi-platform graphics library.

The SixLabors ImageSharp update compiled and ran first time.

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;

using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;

namespace ResnetV5ObjectClassificationApplication
{
   class Program
   {
      static void Main()
      {
         string modelPath = "resnet50-v2-7.onnx"; // Updated model path
         string imagePath = "pizza.jpg"; // Updated image path
         string labelsPath = "labels.txt"; // Path to labels file

         using var session = new InferenceSession(modelPath);
         var inputTensor = LoadAndPreprocessImage(imagePath);

         var inputs = new List<NamedOnnxValue>
         {
            NamedOnnxValue.CreateFromTensor("data", inputTensor) // Using "data" as the input tensor name
         };

         using var results = session.Run(inputs);
         var output = results.First().AsTensor<float>().ToArray();

         // Calculate softmax
         var probabilities = Softmax(output);

         // Load labels
         var labels = File.ReadAllLines(labelsPath);

         // Find Top 10 labels and their confidence scores
         var top10 = probabilities
             .Select((prob, index) => new { Label = labels[index], Confidence = prob })
             .OrderByDescending(item => item.Confidence)
             .Take(10);

         Console.WriteLine("Top 10 Predictions:");
         foreach (var item in top10)
         {
            Console.WriteLine($"{item.Label}: {item.Confidence}");
         }

         Console.WriteLine("Press ENTER to exit");
         Console.ReadLine();
      }

      static DenseTensor<float> LoadAndPreprocessImage(string imagePath)
      {
         int width = 224, height = 224; // ResNet50 expects 224x224 input

         using var image = Image.Load<Rgb24>(imagePath);
         image.Mutate(x => x.Resize(width, height));

         var tensor = new DenseTensor<float>(new[] { 1, 3, width, height });

         // ImageNet mean & standard deviation values
         float[] mean = { 0.485f, 0.456f, 0.406f };
         float[] stdev = { 0.229f, 0.224f, 0.225f };

         for (int y = 0; y < height; y++)
         {
            for (int x = 0; x < width; x++)
            {
               var pixel = image[x, y];

               // Normalize using mean and standard deviation
               tensor[0, 0, y, x] = (pixel.R / 255f - mean[0]) / stdev[0]; // Red channel
               tensor[0, 1, y, x] = (pixel.G / 255f - mean[1]) / stdev[1]; // Green channel
               tensor[0, 2, y, x] = (pixel.B / 255f - mean[2]) / stdev[2]; // Blue channel
            }
         }

         return tensor;
      }

      static float[] Softmax(float[] logits)
      {
         // Compute softmax  
         float maxVal = logits.Max();
         var expScores = logits.Select(logit => Math.Exp(logit - maxVal)).ToArray(); // Explicitly cast logit to double  
         double sumExpScores = expScores.Sum();
         return expScores.Select(score => (float)(score / sumExpScores)).ToArray();
      }
   }
}

Summary

The Copilot generated code in this post in this was “inspired” by the Image recognition with ResNet50v2 in C# sample application.

The Copilot generated code in this post is not suitable for production

Building Cloud AI with Github Copilot- YoloSharp Azure HTTP Functions

Introduction

For this post I have used Github Copilot prompts to generate Azure HTTP Trigger functions which use Ultralytics YoloV8 and Compunet YoloSharp for object classification, object detection, and pose estimation.

I started with the Visual Studio 2022 Azure functions quick start code which ran first time.

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Extensions.Logging;

namespace YoloSharpxxxxxHttpTriggerFunction
{
    public class Function1
    {
        private readonly ILogger<Function1> _logger;

        public Function1(ILogger<Function1> logger)
        {
            _logger = logger;
        }

        [Function("Function1")]
        public IActionResult Run([HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")] HttpRequest req)
        {
            _logger.LogInformation("C# HTTP trigger function processed a request.");
            return new OkObjectResult("Welcome to Azure Functions!");
        }
    }
}

The code generated by Github Copilot for the three functions changed the Function attribute to FunctionName and didn’t initialise the ILogger correctly.

[FunctionName("DetectObjects")]
public static async Task<IActionResult> Run(
     [HttpTrigger(AuthorizationLevel.Function, "post", Route = "detect")] HttpRequest req,
     ILogger log)
{
   log.LogInformation("DetectObjects function received a request for object detection.");
   ...
}

Every so often, when uploading more than one image at a time there was a “System.IO.InvalidData Exception: The stream exceeded the data limit 16384” error. In previous examples I had tried the batch processing of multiple images but had hit memory issues, so putting the image to be in the message body rather than Multipart Form Data for future development seems like a reasonable approach.

Image in the body of the request

Object Classification

I started with an object classification function because in previous examples Github Copilot was better at unpacking the results.

please write an httpTrigger azure function that uses YoloSharp and a Yolo image classification onnx model
Image classification not object detection
The image is in the form data
The multipart/form-data check can be removed
The YoloPredictor should be released after use
Many image files could be uploaded in one request
Only one image file can be uploaded in one request

[Function("YoloImageClassificationFunction")]
public async Task<IActionResult> Run([HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequest req)
{
   _logger.LogInformation("C# HTTP trigger function processed a request.");

   var form = await req.ReadFormAsync();
   var files = form.Files;

   if (files.Count == 0)
   {
      return new BadRequestObjectResult("No images uploaded.");
   }

   if (files.Count > 1)
   {
      return new BadRequestObjectResult("Only one image file can be uploaded in one request.");
   }

   var file = files[0];
   if (file.Length > 0)
   {
      using (var memoryStream = new MemoryStream())
      {
         await file.CopyToAsync(memoryStream);
         var imageBytes = memoryStream.ToArray();

         using (var yoloModel = new YoloPredictor("yolov8s-cls.onnx"))
         {
            var classifications = yoloModel.Classify(imageBytes);

            return new OkObjectResult(new { file.FileName, classifications });
         }
      }
   }

   return new BadRequestObjectResult("Invalid image file.");
}

Image in the form data of the request

When I compared the results with previous applications, they were the same. I should have added code which discarded any result with less that a specified confidence to reduce the size of the results.

Object Detection

please write an azure function with an http trigger that uses yolosharp and an onnx file to detect objects in an image
The image is not in the body it is in the form
Image.Load is not used
yolo.Detect can process an image file stream
The YoloPredictor should be released after use
Many image files could be uploaded in one request
Only one image per request
Add multipart/form-data content type check
Add check that there are headers — Didn’t get this right
Add check that req.Headers is not null
Add check that request has ContentType and it is multipart/form-data

[Function("ObjectDetectionFunction")]
public async Task<IActionResult> Run( [HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequest req)
{
   _logger.LogInformation("C# HTTP trigger function processed a request.");

   // Intellisense fix
   if (req.Headers == null || !req.Headers.TryGetValue("Content-Type", out Microsoft.Extensions.Primitives.StringValues value) || !value.ToString().Contains("multipart/form-data"))
   {
      return new BadRequestObjectResult("The request must have a Content-Type header with multipart/form-data.");
   }

   // Read the images from the form data
   var form = await req.ReadFormAsync();
   var files = form.Files;
   if (files.Count == 0)
   {
      return new BadRequestObjectResult("No image files uploaded.");
   }

   if (files.Count > 1)
   {
      return new BadRequestObjectResult("Only one image file is allowed per request.");
   }

   var file = files[0];
   if (file.Length == 0)
   {
      return new BadRequestObjectResult("The uploaded image file is empty.");
   }

   // Load the YOLOv8 model
   using (var yolo = new YoloPredictor("yolov8s.onnx"))
   {
      // Perform object detection
      using (var stream = file.OpenReadStream())
      {
         var items = yolo.Detect(stream);
         var result = new { FileName = file.FileName, Detections = items };

         // Return the detection results
         return new OkObjectResult(result);
      }
   }
}

After a couple of manual fixes the function ran in the desktop emulator

When I compared the results with previous applications, they were the same.

Pose Estimation

I forgot the ILogger initialisation so had to do it at the end

please write an azure function with an http trigger that uses yolosharp to estimate the pose of humans in an uploaded image.
Yolo v8 pose estimation model and yolosharp library
Make into azure function
The image files are in the form of the request
Modify the code so more than one image per request can be processed
Initialise ILogger in the constructor

//[FunctionName("PoseEstimation")]
[Function("PoseEstimation")]
public async Task<IActionResult> Run([HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequest req)
{
   _log.LogInformation("Pose estimation function processed a request.");

   if (!req.HasFormContentType || !req.Form.Files.Any())
   {
      return new BadRequestObjectResult("Please upload image files.");
   }

   var results = new List<object>();

   foreach (var file in req.Form.Files)
   {
      using var memoryStream = new MemoryStream();
      await file.CopyToAsync(memoryStream);
      memoryStream.Position = 0;

      using var image = Image.Load<Rgba32>(memoryStream);

      // Initialize the YOLO model
      //using var predictor = new YoloPredictor("path/to/model.onnx");
      using var predictor = new YoloPredictor("yolov8s-pose.onnx");

      // Perform pose estimation
      var result = await predictor.PoseAsync(image);

      // Format the results
      //var poses = result.Poses.Select(pose => new
      var poses = result.Select(pose => new
      {
         //Keypoints = pose.Keypoints.Select(k => new { k.X, k.Y }),
         Keypoints = pose.Select(k => new { k.Point.X, k.Point.Y }),
         Confidence = pose.Confidence
      });

      results.Add(new
      {
         Image = file.FileName,
         Poses = poses
      });
   }

   return new OkObjectResult(new { results });
}

After a couple of manual fixes including changing the way the results were generated the function ran in the desktop emulator.

Summary

The generated code worked but required manual fixes and was pretty ugly

The Github Copilot generated code in this post is not suitable for production

Building Edge AI with Copilot – Faster R-CNN Client

Introduction

To better understand how Copilot and Github Copilot generated code was impacted by the wording and order of prompts I re-played one of my previous sessions.

The generated code looked “reasonable” and vaguely familiar.

static void Main(string[] args)
{
    // Paths to the ONNX model and the image file (adjust these paths as needed)
    string modelPath = @"..\\..\\..\\..\\Models\\FasterRCNN-10.onnx";
    string imagePath = "sports.jpg";

    // Create the OnnxInference session
    using var session = new InferenceSession(modelPath);

    // Load the image from disk using ImageSharp
    using var image = Image.Load<Rgb24>(imagePath);

    // Resize the image to fit within the range and adjust dimensions to be divisible by 32
    ResizeImage(image);

    // Extract tensor data from the image (with shape [3, height, width])
    var inputTensor = ExtractTensorFromImage(image);

    // Create NamedOnnxValue input (ensure that the input name "image" matches your model's input)
    var inputs = new List<NamedOnnxValue>
    {
        NamedOnnxValue.CreateFromTensor("image", inputTensor)
    };

    // Run the model inference  
    using IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results = session.Run(inputs);

    // Process and display the outputs (bounding boxes, labels, and confidences)
    ProcessOutput(results);

    Console.WriteLine("Press Enter to exit");
    Console.ReadLine();
}

/// <summary>
/// Resizes the input image such that both width and height are within the range [800, 1333]
/// and ensures the dimensions are divisible by 32.
/// </summary>
private static void ResizeImage(Image<Rgb24> image)
{
   const int minSize = 800;
   const int maxSize = 1333;
   int originalWidth = image.Width;
   int originalHeight = image.Height;

   // Determine the scaling factor so that the smallest side is at least minSize and the largest does not exceed maxSize.
   float scale = Math.Min((float)maxSize / Math.Max(originalWidth, originalHeight),
                                   (float)minSize / Math.Min(originalWidth, originalHeight));

   // Compute the new dimensions based on the scale
   int newWidth = (int)(originalWidth * scale);
   int newHeight = (int)(originalHeight * scale);

   // Adjust dimensions to be divisible by 32
   newWidth = (newWidth / 32) * 32;
   newHeight = (newHeight / 32) * 32;

   image.Mutate(x => x.Resize(newWidth, newHeight));
}

/// <summary>
/// Converts the resized image into a DenseTensor<float> with shape [3, height, width].
/// The image is processed to subtract the Faster‑RCNN channel means (B, G, R order).
/// </summary>
private static DenseTensor<float> ExtractTensorFromImage(Image<Rgb24> image)
{
   int width = image.Width;
   int height = image.Height;

   // Create a tensor with shape [channels, height, width]
   var tensor = new DenseTensor<float>(new[] { 3, height, width });

   // Faster‑RCNN channel means (order: blue, green, red)
   float[] mean = { 102.9801f, 115.9465f, 122.7717f };

   // Process each pixel row; ImageSharp provides efficient pixel row access.
   image.ProcessPixelRows(accessor =>
   {
      for (int y = 0; y < height; y++)
      {
         var pixelRow = accessor.GetRowSpan(y);
         for (int x = 0; x < width; x++)
         {
             // Subtract the channel mean value (ensuring B, G, R order)
             tensor[0, y, x] = pixelRow[x].B - mean[0];
             tensor[1, y, x] = pixelRow[x].G - mean[1];
             tensor[2, y, x] = pixelRow[x].R - mean[2];
         }
      }
   });

return tensor;
}

/// <summary>
/// Processes the model output, extracting bounding boxes, labels, and confidences.
/// Only detections with confidence scores above a defined threshold are printed.
/// </summary>
private static void ProcessOutput(IDisposableReadOnlyCollection<DisposableNamedOnnxValue> output)
{
    // Note: The output node names ("6379", "6381", "6383") are model-specific.
    // They correspond, respectively, to boxes, labels, and confidence scores.
    var boxesTensor = output.First(x => x.Name == "6379").AsTensor<float>();
    var labelsTensor = output.First(x => x.Name == "6381").AsTensor<long>();
    var confidencesTensor = output.First(x => x.Name == "6383").AsTensor<float>();

    float[] boxes = boxesTensor.ToArray();
    long[] labels = labelsTensor.ToArray();
    float[] confidences = confidencesTensor.ToArray();

    const float minConfidence = 0.7f;

    // Each bounding box is represented by 4 values: x1, y1, x2, y2.
    for (int i = 0; i < boxes.Length; i += 4)
    {
        int detectionIndex = i / 4;
        if (confidences[detectionIndex] >= minConfidence)
        {
           long label = labels[detectionIndex];
           float confidence = confidences[detectionIndex];
           float x1 = boxes[i];
           float y1 = boxes[i + 1];
           float x2 = boxes[i + 2];
           float y2 = boxes[i + 3];
           Console.WriteLine($"Label: {label}, Confidence: {confidence}, Bounding Box: [{x1}, {y1}, {x2}, {y2}]");
        }
    }
}

The Copilot generated code had the names of the output tensors (6379,6381, 6383), the mean calculation and the order of the colours (B,G,R) correct. The name of the image file and the path to the model file in The Explanation and Additional information looked a lot like mine.

All I had to do was add the Microsoft.ML.OnnxRuntime and SixLabors.ImageSharp NuGets then the code compiled and ran first time. I then checked the results, and they looked reasonable.

The similarities between the generated code for the different blog posts was suspicious so I asked…

Summary

The Copilot generated code in this post in this was “inspired” the Copilot code generated for my Building Edge AI with GitHub Copilot – Faster R-CNN Client, Building Edge AI with GitHub Copilot – Faster R-CNN Client Revisited or AIIoTForTheEdgeAndAzureBuiltWithCopilot repository.

The Github Copilot generated code in my AIIoTForTheEdgeAndAzureBuiltWithCopilot repository was then “inspired” by the Object detection with Faster RCNN Deep Learning in C# and Image recognition with ResNet50v2 in C# samples.

The Copilot generated code in this post is not suitable for production

Building Edge AI with GitHub Copilot – Faster R-CNN Client Revisited

Introduction

While building the first GitHub Copilot version I noticed that when System.Drawing.Common was changed to Sixlabors.ImageSharp made a significant difference to the generated code. For this post I’ll be using GitHub Copilot to generate code for a console application that uses a Faster R-CNN ONNX model to process an image loaded from disk.

please write a C# console application that uses Onnx to run a ONNX Faster-RCNN object detection model on an image loaded from disk

I manually added the System.Drawing.Commom, Microsoft.ML.OnnxRuntime NuGet packages, using directives and then the code compiled.

static void Main(string[] args)
{
   // Path to the ONNX model and input image
   string modelPath = "FasterRCNN-10.onnx";
   string imagePath = "sports.jpg";

   // Load the image
   Bitmap image = new Bitmap(imagePath);
   var inputTensor = PreprocessImage(image);

   // Load the ONNX model
   using var session = new InferenceSession(modelPath);

   // Create input data
   var inputName = session.InputMetadata.Keys.First();
   var inputs = new List<NamedOnnxValue>
   {
         NamedOnnxValue.CreateFromTensor(inputName, inputTensor)
   };

   //// Run inference
   using IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results = session.Run(inputs);

   // Process output
   foreach (var result in results)
   {
      Console.WriteLine($"{result.Name}: {string.Join(", ", result.AsEnumerable<float>())}");
   }
}

static DenseTensor<float> PreprocessImage(Bitmap image)
{
   // Resize image to model's expected input size (e.g., 224x224)
   int targetWidth = 224;
   int targetHeight = 224;
   Bitmap resizedImage = new Bitmap(image, new Size(targetWidth, targetHeight));

   // Convert image to float array and normalize
   var input = new DenseTensor<float>(new[] { 1, 3, targetHeight, targetWidth });
   for (int y = 0; y < targetHeight; y++)
   {
      for (int x = 0; x < targetWidth; x++)
      {
         Color pixel = resizedImage.GetPixel(x, y);
         input[0, 0, y, x] = pixel.R / 255f;
         input[0, 1, y, x] = pixel.G / 255f;
         input[0, 2, y, x] = pixel.B / 255f;
      }
   }

   return input;
}

I fixed the paths to the ONNX model and image file, so the application ran but there was an error.

The dimensions of the input tensor were wrong based on the Faster R-CNN documentation because the declaration had an extra dimension.

Change dimensions of tensor by removing batch from declaration

static DenseTensor<float> PreprocessImage(Bitmap image)
{
   // Resize image to model's expected input size (e.g., 224x224)
   int targetWidth = 224;
   int targetHeight = 224;
   Bitmap resizedImage = new Bitmap(image, new Size(targetWidth, targetHeight));

   // Convert image to float array and normalize
   var input = new DenseTensor<float>(new[] { 3, targetHeight, targetWidth });
   for (int y = 0; y < targetHeight; y++)
   {
      for (int x = 0; x < targetWidth; x++)
      {
         Color pixel = resizedImage.GetPixel(x, y);
         input[0, y, x] = pixel.R / 255f;
         input[1, y, x] = pixel.G / 255f;
         input[2, y, x] = pixel.B / 255f;
      }
   }

   return input;
}

GitHub Copilot fixed the tensor declaration by removing the batch id, then the application ran but there was an error.

The dimensions of the input image were wrong so, based on the Faster R-CNN documentation I used GitHub Copilot to resize the image

resize the image such that both height and width are within the range of [800, 1333], such that both height and width are divisible by 32

static Bitmap ResizeImageForModel(Bitmap image)
{
   // Define the target range and divisibility
   const int minSize = 800;
   const int maxSize = 1333;
   const int divisor = 32;

   // Get original dimensions
   int originalWidth = image.Width;
   int originalHeight = image.Height;

   // Calculate scale factor to fit within the range while maintaining aspect ratio
   float scale = Math.Min((float)maxSize / Math.Max(originalWidth, originalHeight),
                          (float)minSize / Math.Min(originalWidth, originalHeight));

   // Calculate new dimensions
   int newWidth = (int)(originalWidth * scale);
   int newHeight = (int)(originalHeight * scale);

   // Ensure dimensions are divisible by 32
   newWidth = (newWidth / divisor) * divisor;
   newHeight = (newHeight / divisor) * divisor;

   // Resize the image
   return new Bitmap(image, new Size(newWidth, newHeight));
}

GitHub Copilot fixed the image resizing, so the application ran but there was still an error.

The processing of the output tensor was wrong so, based on the Faster R-CNN documentation I used GitHub Copilot to add the code required to “correctly” display the results.

Display label, confidence and bounding box

I also manually added the using directive for System.Drawing.Drawing2D

static void ProcessOutput(IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results, Bitmap image)
{
   // Extract output tensors
   var boxes = results.First(r => r.Name == "boxes").AsEnumerable<float>().ToArray();
   var labels = results.First(r => r.Name == "labels").AsEnumerable<long>().ToArray();
   var scores = results.First(r => r.Name == "scores").AsEnumerable<float>().ToArray();

   using Graphics graphics = Graphics.FromImage(image);
   graphics.SmoothingMode = SmoothingMode.AntiAlias;

   for (int i = 0; i < labels.Length; i++)
   {
      if (scores[i] < 0.5) continue; // Filter low-confidence detections

      // Extract bounding box coordinates
      float x1 = boxes[i * 4];
      float y1 = boxes[i * 4 + 1];
      float x2 = boxes[i * 4 + 2];
      float y2 = boxes[i * 4 + 3];

      // Draw bounding box
      RectangleF rect = new RectangleF(x1, y1, x2 - x1, y2 - y1);
      graphics.DrawRectangle(Pens.Red, rect.X, rect.Y, rect.Width, rect.Height);

      // Display label and confidence
      string label = $"Label: {labels[i]}, Confidence: {scores[i]:0.00}";
      graphics.DrawString(label, new Font("Arial", 12), Brushes.Yellow, new PointF(x1, y1 - 20));
   }

   // Save the image with annotations
   image.Save("output.jpg");
   Console.WriteLine("Output image saved as 'output.jpg'.");
}

The application ran but there was an error because the output tensor names were wrong.

I used Netron to determine the correct output tensor names.

It was quicker to manually fix the output tensor names

static void ProcessOutput(IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results, Bitmap image)
 {
    // Extract output tensors
    var boxes = results.First(r => r.Name == "6379").AsEnumerable<float>().ToArray();
    var labels = results.First(r => r.Name == "6381").AsEnumerable<long>().ToArray();
    var scores = results.First(r => r.Name == "6383").AsEnumerable<float>().ToArray();

    using Graphics graphics = Graphics.FromImage(image);
    graphics.SmoothingMode = SmoothingMode.AntiAlias;

    for (int i = 0; i < labels.Length; i++)
    {
       if (scores[i] < 0.5) continue; // Filter low-confidence detections

       // Extract bounding box coordinates
       float x1 = boxes[i * 4];
       float y1 = boxes[i * 4 + 1];
       float x2 = boxes[i * 4 + 2];
       float y2 = boxes[i * 4 + 3];

       // Draw bounding box
       RectangleF rect = new RectangleF(x1, y1, x2 - x1, y2 - y1);
       graphics.DrawRectangle(Pens.Red, rect.X, rect.Y, rect.Width, rect.Height);

       // Display label and confidence
       string label = $"Label: {labels[i]}, Confidence: {scores[i]:0.00}";
       graphics.DrawString(label, new Font("Arial", 12), Brushes.Yellow, new PointF(x1, y1 - 20));
    }

    // Save the image with annotations
    image.Save("output.jpg");
    Console.WriteLine("Output image saved as 'output.jpg'.");
 }

The application ran but the results were bad, so I checked format of the input tensor and figured out the mean adjustment was missing.

Apply mean to each channel

I used GitHub Copilot to add code for the mean adjustment for each pixel

static DenseTensor<float> PreprocessImage(Bitmap image)
{
   // Resize image to model's expected input size  
   Bitmap resizedImage = ResizeImageForModel(image);

   // Apply FasterRCNN mean values to each channel  
   float[] mean = { 102.9801f, 115.9465f, 122.7717f };

   // Convert image to float array and normalize  
   var input = new DenseTensor<float>(new[] { 3, resizedImage.Height, resizedImage.Width });
   for (int y = 0; y < resizedImage.Height; y++)
   {
      for (int x = 0; x < resizedImage.Width; x++)
      {
         Color pixel = resizedImage.GetPixel(x, y);
         input[0, y, x] = (pixel.R - mean[0]) / 255f;
         input[1, y, x] = (pixel.G - mean[1]) / 255f;
         input[2, y, x] = (pixel.B - mean[2]) / 255f;
      }
   }

   return input;
}

The application ran but the results were still bad, so I checked format of the input tensor and figured out the mean adjustment was wrong. It was quicker to manually fix up the mean calculation.

static DenseTensor<float> PreprocessImage(Bitmap image)
{
   // Resize image to model's expected input size  
   Bitmap resizedImage = ResizeImageForModel(image);

   // Apply FasterRCNN mean values to each channel  
   float[] mean = { 102.9801f, 115.9465f, 122.7717f };

   // Convert image to float array and normalize  
   var input = new DenseTensor<float>(new[] { 3, resizedImage.Height, resizedImage.Width });
   for (int y = 0; y < resizedImage.Height; y++)
   {
      for (int x = 0; x < resizedImage.Width; x++)
      {
         Color pixel = resizedImage.GetPixel(x, y);

         input[0, y, x] = pixel.R - mean[0];
         input[1, y, x] = pixel.G - mean[1];
         input[2, y, x] = pixel.B - mean[2];
      }
   }

   return input;
}

The application ran but the results were still bad, so I checked format of the input tensor and figured out the input tensor was BGR rather than RGB.

Change to B,G,R

static DenseTensor<float> PreprocessImage(Bitmap image)
{
   // Resize image to model's expected input size  
   Bitmap resizedImage = ResizeImageForModel(image);

   // Apply FasterRCNN mean values to each channel  
   float[] mean = { 102.9801f, 115.9465f, 122.7717f };

   // Convert image to float array and normalize  
   var input = new DenseTensor<float>(new[] { 3, resizedImage.Height, resizedImage.Width });
   for (int y = 0; y < resizedImage.Height; y++)
   {
      for (int x = 0; x < resizedImage.Width; x++)
      {
         Color pixel = resizedImage.GetPixel(x, y);
         input[0, y, x] = pixel.B - mean[0] ;
         input[1, y, x] = pixel.G - mean[1] ;
         input[2, y, x] = pixel.R - mean[2] ;
      }
   }

   return input;
}

Finally, the application minimum bounding rectangles (MBRs), labels and confidences looked correct.

Summary

The GitHub Copilot generated code looked like it was “inspired” by the onnxruntime.ai Object detection with Faster RCNN Deep Learning in C# sample.

The additional code for marking up the image in the ProcessOutput was unexpected and I wonder if there wasn’t a Sixlabors.ImageSharp example for “inspiration”

The Copilot generated code in this post is not suitable for production

Building Edge AI with GitHub Copilot – Faster R-CNN Client

Introduction

For this post I’ll be using GitHub Copilot to generate code for a console application that uses a Faster R-CNN ONNX model to process an image loaded from disk.

please write a C# console application that uses Onnx to run a ONNX Faster-RCNN object detection model on an image loaded from disk

I added the System.Drawing.Common and Microsoft.ML.OnnxRuntime NuGet packages, required using directives then the code compiled. The ProcessOutput method was stubbed out so I will need to figure out the format of the output tensor

static void Main(string[] args)
{
   string modelPath = "FasterRCNN-10.onnx";
   string imagePath = "sports.jpg";

   using var session = new InferenceSession(modelPath);
   using var image = new Bitmap(imagePath);

   var inputTensor = ExtractTensorFromImage(image);
   var inputs = new List<NamedOnnxValue>
   {
       NamedOnnxValue.CreateFromTensor("image", inputTensor)
   };

   using IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results = session.Run(inputs);
   var output = results.First().AsEnumerable<float>().ToArray();

   // Process the output (e.g., draw bounding boxes on the image)
   ProcessOutput(output, image);

   image.Save("output.jpg", ImageFormat.Jpeg);
   Console.WriteLine("Object detection completed. Output saved as output.jpg");
}

private static DenseTensor<float> ExtractTensorFromImage(Bitmap image)
{
   int width = image.Width;
   int height = image.Height;
   var tensor = new DenseTensor<float>(new[] { 1, 3, height, width });

   for (int y = 0; y < height; y++)
   {
      for (int x = 0; x < width; x++)
      {
         Color pixel = image.GetPixel(x, y);
         tensor[0, 0, y, x] = pixel.R / 255.0f;
         tensor[0, 1, y, x] = pixel.G / 255.0f;
         tensor[0, 2, y, x] = pixel.B / 255.0f;
      }
   }

   return tensor;
}

private static void ProcessOutput(float[] output, Bitmap image)
{
   // Implement the logic to process the output and draw bounding boxes on the image
   // This is a placeholder for the actual implementation
}

I fixed the paths to the ONNX model and image files, so the application ran but there was an error.

The dimensions of the input tensor were wrong because the declaration included a batch id.

Change dimensions of tensor by removing batch from declaration

private static DenseTensor<float> ExtractTensorFromImage(Bitmap image)
{
   int width = image.Width;
   int height = image.Height;
   var tensor = new DenseTensor<float>(new[] { 3, height, width });

   for (int y = 0; y < height; y++)
   {
      for (int x = 0; x < width; x++)
      {
         Color pixel = image.GetPixel(x, y);
         tensor[0, y, x] = pixel.R / 255.0f;
         tensor[1, y, x] = pixel.G / 255.0f;
         tensor[2, y, x] = pixel.B / 255.0f;
      }
   }

   return tensor;
 }

GitHub Copilot fixed the tensor declaration by removing the batch id. The application also used System.Drawing which is not supported on my target embedded platforms.

change from System.Drawing to ImageSharp

I added the SixLabors.ImageSharp and removed System.Drawing.Common NuGets. Then updated the using directives as required.

using var image = Image.Load<Rgb24>(imagePath);
...
private static DenseTensor<float> ExtractTensorFromImage(Image<Rgb24> image)
{
   int width = image.Width;
   int height = image.Height;
   var tensor = new DenseTensor<float>(new[] { 3, height, width });

   image.ProcessPixelRows(accessor =>
   {
      for (int y = 0; y < height; y++)
      {
         var pixelRow = accessor.GetRowSpan(y);
         for (int x = 0; x < width; x++)
         {
            tensor[0, y, x] = pixelRow[x].R / 255.0f;
            tensor[1, y, x] = pixelRow[x].G / 255.0f;
            tensor[2, y, x] = pixelRow[x].B / 255.0f;
         }
      }
   });

   return tensor;
}

The application ran but there was an error as the dimensions of the input image were wrong.

Based on the Faster R-CNN documentation I used ImageSharp to resize the image

Use ImageSharp to resize the image such that both height and width are within the range of [800, 1333], such that both height and width are divisible by 32.

 private static void ResizeImage(Image<Rgb24> image)
 {
    const int minSize = 800;
    const int maxSize = 1333;

    int originalWidth = image.Width;
    int originalHeight = image.Height;

    float scale = Math.Min((float)maxSize / Math.Max(originalWidth, originalHeight), (float)minSize / Math.Min(originalWidth, originalHeight));
    int newWidth = (int)(originalWidth * scale);
    int newHeight = (int)(originalHeight * scale);

    // Ensure dimensions are divisible by 32
    newWidth = (newWidth / 32) * 32;
    newHeight = (newHeight / 32) * 32;

    image.Mutate(x => x.Resize(newWidth, newHeight));
 }

The application ran but the results were bad, so I checked format of the input tensor and figured out the R,G,B values need to be adjusted.

Apply mean to each channel

private static DenseTensor<float> ExtractTensorFromImage(Image<Rgb24> image)
{
   int width = image.Width;
   int height = image.Height;
   var tensor = new DenseTensor<float>(new[] { 3, height, width });

   // Mean values for each channel
   float[] mean = { 0.485f, 0.456f, 0.406f };

   image.ProcessPixelRows(accessor =>
   {
      for (int y = 0; y < height; y++)
      {
         var pixelRow = accessor.GetRowSpan(y);
         for (int x = 0; x < width; x++)
         {
            tensor[0, y, x] = (pixelRow[x].R / 255.0f) - mean[0];
            tensor[1, y, x] = (pixelRow[x].G / 255.0f) - mean[1];
            tensor[2, y, x] = (pixelRow[x].B / 255.0f) - mean[2];
         }
      }
   });

   return tensor;
 }

The application ran but the results were still bad, so I checked format of the input tensor and figured out the Resnet50 means had be used and the input tensor was BGR rather than RGB

Use FasterRCNN means not resnet ones
Change to B,G,R

private static DenseTensor<float> ExtractTensorFromImage(Image<Rgb24> image)
{
   int width = image.Width;
   int height = image.Height;
   var tensor = new DenseTensor<float>(new[] { 3, height, width });

   // Mean values for each channel for FasterRCNN
   float[] mean = { 102.9801f, 115.9465f, 122.7717f };

   image.ProcessPixelRows(accessor =>
   {
      for (int y = 0; y < height; y++)
      {
         var pixelRow = accessor.GetRowSpan(y);
         for (int x = 0; x < width; x++)
         {
            tensor[0, y, x] = pixelRow[x].B - mean[0];
            tensor[1, y, x] = pixelRow[x].G - mean[1];
            tensor[2, y, x] = pixelRow[x].R - mean[2];
         }
      }
   });

   return tensor;
}

When I inspected the values in the output tensor in the debugger they looked “reasonable” so got GitHub Copilot to add the code required to display the results.

Display label, confidence and bounding box

The application ran but there was an exception because the names of the output tensor “dimensions” were wrong.

I used Netron to get the correct output tensor “dimension” names.

I then manually fixed the output tensor “dimension” names

private static void ProcessOutput(IDisposableReadOnlyCollection<DisposableNamedOnnxValue> output)
{
   var boxes = output.First(x => x.Name == "6379").AsTensor<float>().ToArray();
   var labels = output.First(x => x.Name == "6381").AsTensor<long>().ToArray();
   var confidences = output.First(x => x.Name == "6383").AsTensor<float>().ToArray();

   const float minConfidence = 0.7f;

   for (int i = 0; i < boxes.Length; i += 4)
   {
      var index = i / 4;
      if (confidences[index] >= minConfidence)
      {
         long label = labels[index];
         float confidence = confidences[index];
         float x1 = boxes[i];
         float y1 = boxes[i + 1];
         float x2 = boxes[i + 2];
         float y2 = boxes[i + 3];

         Console.WriteLine($"Label: {label}, Confidence: {confidence}, Bounding Box: [{x1}, {y1}, {x2}, {y2}]");
      }
   }
}

I manually compared the output of the console application with equivalent YoloSharp application output and the results looked close enough.

Summary

The Copilot prompts required to generate code were significantly more complex than previous examples and I had to regularly refer to the documentation to figure out what was wrong. The code wasn’t great and Copilot didn’t add much value

The Copilot generated code in this post is not suitable for production

Building Edge AI with AI- YoloDotNet Client

Introduction

For this post I have used Copilot prompts to generate code which uses Ultralytics YoloV8 and YoloDoNet by NickSwardh for object detection, object classification, and pose estimation.

Object Detection

static void Main(string[] args)
{
   string modelPath = "path/to/yolo_model.onnx";  // Update with actual model path
   string imagePath = "path/to/image.jpg";        // Update with actual image path

   // Load YOLO model
   var yolo = new YoloModel(modelPath);

   // Load image
   using Bitmap image = new Bitmap(imagePath);

   // Run classification
   var results = yolo.Predict(image);

   // Display results
   foreach (var result in results)
   {
      Console.WriteLine($"Detected: {result.Label} with confidence {result.Confidence:P}");
   }
}

The code didn’t compile so I tried a different prompt

This didn’t compile and looked like it was based on https://github.com/techwingslab/yolov5-net. The generated code also added code to check that the model and image files existed.

static void Main(string[] args)
{
   string modelPath = "yolov8.onnx"; // Replace with your actual model path
   string imagePath = "image.jpg"; // Replace with your actual image path

   if (!File.Exists(modelPath))
   {
      Console.WriteLine("Error: Model file not found!");
      return;
   }

   if (!File.Exists(imagePath))
   {
      Console.WriteLine("Error: Image file not found!");
      return;
   }

   try
   {
      // Load the YOLO model
      using var yolo = new Yolo(modelPath);

      // Load image from disk
      using var image = new Bitmap(imagePath);

      // Run object detection
      var results = yolo.Predict(image);

      // Display detected objects
      foreach (var result in results)
      {
         Console.WriteLine($"Detected: {result.Label} - Confidence: {result.Confidence}");
         Console.WriteLine($"Bounding Box: {result.BoundingBox}");
      }
   }
   catch (Exception ex)
   {
      Console.WriteLine($"Error: {ex.Message}");
   }
}

This didn’t compile so tried again

static void Main(string[] args)
{
   string modelPath = "yolov8.onnx"; // Replace with your actual model path
   string imagePath = "image.jpg"; // Replace with your actual image path
...
   try
   {
      var yoloOptions = new YoloOptions
      {
         ConfidenceThreshold = 0.5, // Confidence threshold (adjust as needed)
         IoUThreshold = 0.4        // Intersection over Union threshold
      };

      // Load the YOLO model
      //using var yolo = new Yolo(modelPath);
      using var yolo = new Yolo(yoloOptions);

      // Load image from disk
      using var image = new Bitmap(imagePath);

      // Run object detection
      //var results = yolo.Predict(image);
      var results = yolo.RunObjectDetection(image);

      // Display detected objects
      foreach (var result in results)
      {
         Console.WriteLine($"Detected: {result.Label} - Confidence: {result.Confidence}");
         Console.WriteLine($"Bounding Box: {result.BoundingBox}");
      }
   }
   catch (Exception ex)
   {
      Console.WriteLine($"Error: {ex.Message}");
   }
}

This didn’t compile so tried a different approach

I manually modified the code removing ConfidenceThreshold and IoUThreshold, then used intellisense to “discover” then add ModelType & modelPath

static void Main(string[] args)
{
   string modelPath = "yolov8.onnx"; // Replace with your actual model path
   string imagePath = "image.jpg"; // Replace with your actual image path
...
   try
   {
      var yoloOptions = new YoloOptions
      {
         ModelType = ModelType.ObjectDetection,
         OnnxModel = modelPath
      };

      // Load the YOLO model
      //using var yolo = new Yolo(modelPath);
      //using var yolo = new Yolo(yoloOptions);
      //using var yolo = new Yolo(modelPath, yoloOptions);
      using var yolo = new Yolo(yoloOptions);

      // Load image using SkiaSharp
      using var skBitmap = SKBitmap.Decode(imagePath);

      // Convert SKBitmap to a format YOLO can process
      using var skImage = SKImage.FromBitmap(skBitmap);
      using var skData = skImage.Encode(SKEncodedImageFormat.Jpeg, 100);
      using var memoryStream = new MemoryStream(skData.ToArray());
      //var results = yolo.Predict(memoryStream);
      var results = yolo.RunObbDetection(skImage);

      // Display detected objects
      foreach (var result in results)
      {
         Console.WriteLine($"Detected: {result.Label} - Confidence: {result.Confidence}");
         Console.WriteLine($"Bounding Box: {result.BoundingBox}");
      }
   }
   catch (Exception ex)
   {
      Console.WriteLine($"Error: {ex.Message}");
   }
}

The code compiled and ran but didn’t work because YoloDoNet assumed that my computer had CUDA support

static void Main(string[] args)
{
   string modelPath = "yolov8.onnx"; // Replace with your actual model path
   string imagePath = "image.jpg"; // Replace with your actual image path
...
         try
         {
            var yoloOptions = new YoloOptions
            {
               ModelType = ModelType.ObjectDetection,
               OnnxModel = modelPath,
               Cuda = false
            };

            // Load the YOLO model
            //using var yolo = new Yolo(modelPath);
            //using var yolo = new Yolo(yoloOptions);
            //using var yolo = new Yolo(modelPath, yoloOptions);
            using var yolo = new Yolo(yoloOptions);

            // Load image using SkiaSharp
            using var skBitmap = SKBitmap.Decode(imagePath);

            // Convert SKBitmap to a format YOLO can process
            using var skImage = SKImage.FromBitmap(skBitmap);
            using var skData = skImage.Encode(SKEncodedImageFormat.Jpeg, 100);
            using var memoryStream = new MemoryStream(skData.ToArray());
            //var results = yolo.Predict(memoryStream);
            var results = yolo.RunObbDetection(skImage);

            // Display detected objects
            foreach (var result in results)
            {
               Console.WriteLine($"Detected: {result.Label} - Confidence: {result.Confidence}");
               Console.WriteLine($"Bounding Box: {result.BoundingBox}");
            }
         }
         catch (Exception ex)
         {
            Console.WriteLine($"Error: {ex.Message}");
         }
      }
   }
}

The code compiled and ran but didn’t work because I had accidentally used oriented bounding box rather than the object detection.

I was getting sick of prompts so manually fixed SKImage loading, RunObjectDetection and then removed the “cruft”.

static void Main(string[] args)
{
   string modelPath = "yolov8s.onnx"; // Replace with your actual model path
   string imagePath = "sports.jpg"; // Replace with your actual image path
...
   try
   {
      var yoloOptions = new YoloOptions
      {
         ModelType = ModelType.ObjectDetection,
         OnnxModel = modelPath,
         Cuda = false
      };

      using var yolo = new Yolo(yoloOptions);

     using var skImage = SKImage.FromEncodedData(imagePath);

      var results = yolo.RunObjectDetection(skImage);

      foreach (var result in results)
      {
         Console.WriteLine($"Detected: {result.Label} - Confidence: {result.Confidence:F2}");
         Console.WriteLine($"Bounding Box: {result.BoundingBox}");
      }
   }
   catch (Exception ex)
   {
      Console.WriteLine($"Error: {ex.Message}");
   }

   Console.WriteLine("Press Enter to exit the application");
   Console.ReadLine();
}

I tested the implementation with sample “sports” image from the YoloSharp Github repository

The console application output looked reasonable

Classification

My initial Copilot prompt

Don’t understand why reference to OpenCV was included

static void Main(string[] args)
{
   string modelPath = "path/to/yolo_model.onnx"; // Update with actual model path
   string imagePath = "path/to/image.jpg"; // Update with actual image path

   // Load YOLO model
   var yolo = new YoloModel(modelPath);

   // Load image
   using Bitmap image = new Bitmap(imagePath);

   // Run classification
   var results = yolo.Predict(image);

   // Display results
  foreach (var result in results)
  {
      Console.WriteLine($"Detected: {result.Label} with confidence {result.Confidence:P}");
   }
}

The code didn’t compile so I prompted the code be modified to use SkiaSharp which is used by YoloDoNet

This was a bit strange, so I tried again

I was getting sick of prompts so manually fixed SKImage loading, RunClassification and then removed the “cruft”.

static void Main(string[] args)
{
   string modelPath = "yolov8s-cls.onnx";  // Update with actual model path
   string imagePath = "pizza.jpg";        // Update with actual image path

   var yolo = new Yolo(new YoloOptions()
   {
      ModelType = ModelType.Classification,
      OnnxModel = modelPath,
      Cuda = false
   });

   // Load image
   using SKImage image = SKImage.FromEncodedData(imagePath);

   // Run classification
   var results = yolo.RunClassification(image);

   // Display results
   foreach (var result in results)
   {
      Console.WriteLine($"Detected: {result.Label} with confidence {result.Confidence:P}");
   }

   Console.WriteLine("Press Enter to exit the application");
   Console.ReadLine();
}

At this point the code compiled and ran

Pretty confident this i a picture of a pizza

Pose

My Copilot prompt

Replace, path/to/yolo_model.onnx, and path/to/image.jpg with the actual paths to your model files and input image

This example assumes that YoloDotNet V2 supports the loaded YOLO model. Verify compatibility with the YOLO ObjectDetection variant.

Copilot had “assumed” I meant Ultralytics Yolo V2 and the code didn’t compile. So, I tried again without V2.

At this point I gave up

Summary

Using Copilot prompts to generate code which uses Ultralytics YoloV8 and YoloDoNet didn’t go well. In addition Visual Studio intellisense often struggled to offer useful options.

Overall, the experience wasn’t great.

Building Cloud AI with AI-YoloSharp Object detection Azure HTTP Trigger function

Introduction

Using Copilot to generate the code to retrieve an image from a security camera and small applications for object detection, object classification, with YoloSharp also went surprisingly well. An Azure HTTP Trigger function is a bit more complex so I decided to do one next. I started with the Visual Studio 2022 generated code

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Extensions.Logging;

namespace YoloObjectDetectionFunction
{
    public class Function1
    {
        private readonly ILogger<Function1> _logger;

        public Function1(ILogger<Function1> logger)
        {
            _logger = logger;
        }

        [Function("Function1")]
        public IActionResult Run([HttpTrigger(AuthorizationLevel.Function, "get", "post")] HttpRequest req)
        {
            _logger.LogInformation("C# HTTP trigger function processed a request.");
            return new OkObjectResult("Welcome to Azure Functions!");
        }
    }
}

I then generated the first version of the code with Copilot desktop

The code looked “okay” but had lots of extra “usings”, used FunctionName vs Function attributes etc. so didn’t compile.

I think the “var yolo = new Yolo(modelPath)” comes from YoloDotNet by Niklas Swärd and “var detections = yolo.Predict(image)” is from YoloV8.Net by Samuel Stainback

using System.IO;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Extensions.Logging;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;
using YoloSharp;
using YoloSharp.DataStructures;

public static class YoloObjectDetectionFunction
{
    private static readonly string modelPath = "path/to/your/yolo-model.onnx";

    [FunctionName("YoloObjectDetection")]
    public static async Task<IActionResult> Run(
        [HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequestMessage req,
        ILogger log)
    {
        log.LogInformation("Yolo Object Detection function processed a request.");

        // Read the image from the request
        byte[] imageBytes = await req.Content.ReadAsByteArrayAsync();
        using (Image<Rgba32> image = Image.Load<Rgba32>(imageBytes))
        {
            // Initialize YoloSharp
            using (var yolo = new Yolo(modelPath))
            {
                // Detect objects in the image
                var detections = yolo.Predict(image);

                // Process the detections
                foreach (var detection in detections)
                {
                    // Draw bounding boxes on the image
                    image.Mutate(ctx => ctx.DrawPolygon(Rgba32.Red, 2, detection.BoundingBox.ToPolygon()));
                }

                // Save the modified image to a memory stream
                using (var ms = new MemoryStream())
                {
                    image.SaveAsPng(ms);
                    ms.Seek(0, SeekOrigin.Begin);

                    // Return the modified image as a response
                    var result = new HttpResponseMessage(HttpStatusCode.OK)
                    {
                        Content = new StreamContent(ms)
                    };
                    result.Content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("image/png");
                    return new FileStreamResult(ms, "image/png");
                }
            }
        }
    }
}

I manually fixed all the issues in the code with a lot of assistance from Visual Studio 2022 Intellisense

using System.Net;

using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Extensions.Logging;

using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;
using SixLabors.ImageSharp.Drawing.Processing;

//using YoloSharp;
//using YoloSharp.DataStructures;
using Compunet.YoloSharp;


public static class YoloObjectDetectionFunction
{
   //private static readonly string modelPath = "path/to/your/yolo-model.onnx";
   private static readonly string modelPath = "yolov8s.onnx";

   //[FunctionName("YoloObjectDetection")]
   [Function("YoloObjectDetection")]
   public static async Task<IActionResult> Run(
       [HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequestMessage req,
       ILogger log)
   {
      log.LogInformation("Yolo Object Detection function processed a request.");

      // Read the image from the request
      byte[] imageBytes = await req.Content.ReadAsByteArrayAsync();
      using (Image<Rgba32> image = Image.Load<Rgba32>(imageBytes))
      {
         // Initialize YoloSharp
         //using (var yolo = new Yolo(modelPath))
         using (var yolo = new YoloPredictor(modelPath))
         {
            // Detect objects in the image
            //var detections = yolo.Predict(image);
            var detections = yolo.Detect(image);

            // Process the detections
            foreach (var detection in detections)
            {
               // Draw bounding boxes on the image
               //image.Mutate(ctx => ctx.DrawPolygon(Rgba32.Red, 2, detection.BoundingBox.ToPolygon()));

               var rectangle = new PointF[] {new Point(detection.Bounds.Bottom, detection.Bounds.Left), new Point(detection.Bounds.Bottom, detection.Bounds.Right), new Point(detection.Bounds.Right, detection.Bounds.Top), new Point(detection.Bounds.Left, detection.Bounds.Top)};

               image.Mutate(ctx => ctx.DrawPolygon(Rgba32.ParseHex("FF0000"), 2, rectangle));
            }

            // Save the modified image to a memory stream
            using (var ms = new MemoryStream())
            {
               image.SaveAsPng(ms);
               ms.Seek(0, SeekOrigin.Begin);

               // Return the modified image as a response
               var result = new HttpResponseMessage(HttpStatusCode.OK)
               {
                  Content = new StreamContent(ms)
               };
               result.Content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("image/png");
               return new FileStreamResult(ms, "image/png");
            }
         }
      }
   }
}

When I posted an image to the function with Telerik Fiddler Classic it threw an exception, because the ILogger injected into the Run method was null.

I then asked Github Copilot to “Modify code so the ILogger is parameter of constructor”

using System.Net;

using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Extensions.Logging;

using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;
using SixLabors.ImageSharp.Drawing.Processing;

//using YoloSharp;
//using YoloSharp.DataStructures;
using Compunet.YoloSharp;


//public static class YoloObjectDetectionFunction
public class YoloObjectDetectionFunction
{
   private static readonly ILogger _log;
   //private static readonly string modelPath = "path/to/your/yolo-model.onnx";
   private static readonly string modelPath = "yolov8s.onnx";

   public YoloObjectDetectionFunction(ILogger<YoloObjectDetectionFunction> log)
   {
      _log = log;
   }

   //[FunctionName("YoloObjectDetection")]
   [Function("YoloObjectDetection")]
   //public static async Task<IActionResult> Run( [HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequestMessage req, ILogger log)
   public static async Task<IActionResult> Run([HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequestMessage req)
   {
      _log.LogInformation("Yolo Object Detection function processed a request.");

      // Read the image from the request
      byte[] imageBytes = await req.Content.ReadAsByteArrayAsync();
      using (Image<Rgba32> image = Image.Load<Rgba32>(imageBytes))
      {
         // Initialize YoloSharp
         //using (var yolo = new Yolo(modelPath))
         using (var yolo = new YoloPredictor(modelPath))
         {
            // Detect objects in the image
            //var detections = yolo.Predict(image);
            var detections = yolo.Detect(image);

            // Process the detections
            foreach (var detection in detections)
            {
               // Draw bounding boxes on the image
               //image.Mutate(ctx => ctx.DrawPolygon(Rgba32.Red, 2, detection.BoundingBox.ToPolygon()));

               var rectangle = new PointF[] {new Point(detection.Bounds.Bottom, detection.Bounds.Left), new Point(detection.Bounds.Bottom, detection.Bounds.Right), new Point(detection.Bounds.Right, detection.Bounds.Top), new Point(detection.Bounds.Left, detection.Bounds.Top)};

               image.Mutate(ctx => ctx.DrawPolygon(Rgba32.ParseHex("FF0000"), 2, rectangle));
            }

            // Save the modified image to a memory stream
            using (var ms = new MemoryStream())
            {
               image.SaveAsPng(ms);
               ms.Seek(0, SeekOrigin.Begin);

               // Return the modified image as a response
               var result = new HttpResponseMessage(HttpStatusCode.OK)
               {
                  Content = new StreamContent(ms)
               };
               result.Content.Headers.ContentType = new System.Net.Http.Headers.MediaTypeHeaderValue("image/png");
               return new FileStreamResult(ms, "image/png");
            }
         }
      }
   }
}

When I posted an image to the function it threw an exception, because content of the HttpRequestMessage was null.

I then asked Github Copilot to “Modify the code so that the image is read from the form”

// Read the image from the form
var form = await req.ReadFormAsync();
var file = form.Files["image"];
if (file == null || file.Length == 0)
{
   return new BadRequestObjectResult("Image file is missing or empty.");
}

When I posted an image to the function it returned a 400 Bad Request Error.

After inspecting the request I realized that the name field was wrong, as the generated code was looking for “image”

Content-Disposition: form-data; name=”image”; filename=”sports.jpg”

Then, when I posted an image to the function it returned a 500 error.

But, the FileStreamResult was failing so I modified the code to return a FileContentResult

using (var ms = new MemoryStream())
{
   image.SaveAsJpeg(ms);

   return new FileContentResult(ms.ToArray(), "image/jpg");
}

Then, when I posted an image to the function it succeeded

But, the bounding boxes around the detected objects were wrong.

I then manually fixed up the polygon code so the lines for each bounding box were drawn in the correct order.

// Process the detections
foreach (var detection in detections)
{
   var rectangle = new PointF[] {
      new Point(detection.Bounds.Left, detection.Bounds.Bottom),
      new Point(detection.Bounds.Right, detection.Bounds.Bottom),
      new Point(detection.Bounds.Right, detection.Bounds.Top),
      new Point(detection.Bounds.Left, detection.Bounds.Top)
 };

Then, when I posted an image to the function it succeeded

The bounding boxes around the detected objects were correct.

I then “refactored” the code, removing all the unused “using”s, removed any commented out code, changed ILogger to be initialised using a Primary Constructor etc.

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Extensions.Logging;

using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;
using SixLabors.ImageSharp.Drawing.Processing;

using Compunet.YoloSharp;

public class YoloObjectDetectionFunction(ILogger<YoloObjectDetectionFunction> log)
{
   private readonly ILogger<YoloObjectDetectionFunction> _log = log;
   private readonly string modelPath = "yolov8s.onnx";

   [Function("YoloObjectDetection")]
   public async Task<IActionResult> Run([HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequest req)
   {
      _log.LogInformation("Yolo Object Detection function processed a request.");

      // Read the image from the form
      var form = await req.ReadFormAsync();
      var file = form.Files["image"];
      if (file == null || file.Length == 0)
      {
         return new BadRequestObjectResult("Image file is missing or empty.");
      }

      using (var stream = file.OpenReadStream())
      using (Image<Rgba32> image = Image.Load<Rgba32>(stream))
      {
         // Initialize YoloSharp
         using (var yolo = new YoloPredictor(modelPath))
         {
            // Detect objects in the image
            var detections = yolo.Detect(image);

            // Process the detections
            foreach (var detection in detections)
            {
               var rectangle = new PointF[] {
                  new Point(detection.Bounds.Left, detection.Bounds.Bottom),
                  new Point(detection.Bounds.Right, detection.Bounds.Bottom),
                  new Point(detection.Bounds.Right, detection.Bounds.Top),
                  new Point(detection.Bounds.Left, detection.Bounds.Top)
               };

               image.Mutate(ctx => ctx.DrawPolygon(Rgba32.ParseHex("FF0000"), 2, rectangle));
            }

            // Save the modified image to a memory stream
            using (var ms = new MemoryStream())
            {
               image.SaveAsJpeg(ms);

              return new FileContentResult(ms.ToArray(), "image/jpg");
            }
         }
      }
   }
}

Summary

The initial code generated by Copilot was badly broken but with the assistance of Visual Studio 2022 Intellisense was fixed fairly quickly. The ILogger not being initialised, me using the “wrong” upload file name were easy to debug, but the FileContentResult exception was a bit more difficult.

It took me a quite a bit longer to write the function with Copilot desktop/Github Copilot than what it would have taken me normally. But, I think a lot of this was due to having to take screen shots, writing this blog post as I went, and having already written several Azure HTTP Trigger function for processing uploaded images.

The Copilot generated code in this post is not suitable for production

IoT and AI Building Edge AI with AI- YoloSharp Client

Introduction

Using Copilot to generate the code to retrieve an image from a security camera went surprisingly well so next step was something a bit more complex. For this post I have used Copilot prompts to generate code which uses Ultralytics YoloV8 and Compunet YoloSharp for object detection, object classification, pose estimation, and instance segmentation

using System;
using System.Drawing;
using YOLOSharp;

class Program
{
    static void Main(string[] args)
    {
        string modelPath = "path/to/yolov8.onnx"; // Replace with the path to your YOLOv8 model
        string imagePath = "path/to/image.jpg"; // Replace with the path to your image

        // Load the YOLOv8 model
        var yolo = new YOLO(modelPath);

        // Load the image from disk
        using (var image = Image.FromFile(imagePath))
        {
            // Run the YOLOv8 model on the image
            var results = yolo.Predict(image);

            // Display the results
            foreach (var result in results)
            {
                Console.WriteLine($"Label: {result.Label}, Confidence: {result.Confidence}, BoundingBox: {result.BoundingBox}");
            }
        }
    }
}
In this example:

Replace path/to/yolov8.onnx with the actual path to your YOLOv8 model file.

Replace path/to/image.jpg with the actual path to your image file.

This application loads the YOLOv8 model using YOLOSharp, loads an image from disk, runs the model on the image, and displays the results, including the label, confidence, and bounding box for each detected object.

Happy coding! 🚀

Copilot had “assumed” I meant object detection(reasonable) with YoloSharp and the code didn’t compile.

Object Detection

After some minor fixes and shifting the configuration to an appsettings file the application compiled.

using Compunet.YoloSharp;
using Microsoft.Extensions.Configuration;
using SixLabors.ImageSharp;

class Program
{
   static void Main(string[] args)
   {
      Model.ApplicationSettings applicationSettings;

      Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} 0.3.CameraHTTPClient starting");
#if RELEASE
       Console.WriteLine("RELEASE");
#else
      Console.WriteLine("DEBUG");
#endif
      // load the app settings into configuration
      var configuration = new ConfigurationBuilder()
           .AddJsonFile("appsettings.json", false, true)
      .Build();

      applicationSettings = configuration.GetSection("ApplicationSettings").Get<Model.ApplicationSettings>();

      // Load the YOLOv8 model
      var yolo = new YoloPredictor(applicationSettings.ModelPath);

      // Load the image from disk
      using (var image = Image.Load(applicationSettings.ImagePath))
      {
         // Run the YOLOv8 model on the image
         var results = yolo.Detect(image);

         // Display the results
         foreach (var result in results)
         {
            Console.WriteLine($"Label: {result.Name}, Confidence: {result.Confidence}, BoundingBox: {result.Bounds}");
         }
      }
   }
}

I tested the implementation with sample “sports” image from the YoloSharp Github repository

The console application output looked reasonable

I manually compared the output of the console application with the Ultralytics Hub model preview tab and the results looked close enough.

Pose

My Copilot prompt

please write a C# console application that uses Compunet YoloSharp to run a yolov8 pose model on an image loaded from disk
using Compunet.YoloSharp;
using Microsoft.Extensions.Configuration;
using SixLabors.ImageSharp;

class Program
{
   static void Main(string[] args)
   {
      Model.ApplicationSettings applicationSettings;

      Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} 0.3.CameraHTTPClient starting");
#if RELEASE
       Console.WriteLine("RELEASE");
#else
      Console.WriteLine("DEBUG");
#endif
      // load the app settings into configuration
      var configuration = new ConfigurationBuilder()
           .AddJsonFile("appsettings.json", false, true)
      .Build();

      applicationSettings = configuration.GetSection("ApplicationSettings").Get<Model.ApplicationSettings>();

      // Load the YOLOv8 pose model
      var yolo = new YoloPredictor(applicationSettings.ModelPath);

      // Load the image from disk
      using (var image = Image.Load(applicationSettings.ImagePath))
      {
         // Run the YOLOv8 pose model on the image
         var results = yolo.Pose(image);

         // Display the results
         foreach (var result in results)
         {
            Console.WriteLine($"Label: {result.Name.Name}, Confidence: {result.Confidence}, BoundingBox: {result.Bounds}");
            Console.WriteLine("Keypoints:");
            foreach (var keypoint in result)
            {
               Console.WriteLine($"  - {keypoint.Point}");
            }
         }
      }
   }
}

After some minor fixes and shifting the configuration to an appsettings file the application compiled. I tested the implementation with sample “sports” image from the YoloSharp Github repository

The console application output looked reasonable

I manually compared the output of the console application with the Ultralytics Hub model preview tab and the results were reasonable

Classification

My Copilot prompt

please write a C# console application that uses Compunet YoloSharp to run a yolov8 pose model on an image loaded from disk
using Compunet.YoloSharp;
using Microsoft.Extensions.Configuration;
using SixLabors.ImageSharp;

class Program
{
   static void Main(string[] args)
   {
      Model.ApplicationSettings applicationSettings;

      Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} 0.3.CameraHTTPClient starting");
#if RELEASE
       Console.WriteLine("RELEASE");
#else
      Console.WriteLine("DEBUG");
#endif

      // load the app settings into configuration
      var configuration = new ConfigurationBuilder()
           .AddJsonFile("appsettings.json", false, true)
      .Build();

      applicationSettings = configuration.GetSection("ApplicationSettings").Get<Model.ApplicationSettings>();

      // Load the YOLOv8 classification model
      var yolo = new YoloPredictor(applicationSettings.ModelPath);

      // Load the image from disk
      using (var image = Image.Load(applicationSettings.ImagePath))
      {
         // Run the YOLOv8 classification model on the image
         var results = yolo.Classify(image);

         // Display the results
         foreach (var result in results)
         {
             Console.WriteLine($"Label: {result.Name.Name}, Confidence: {result.Confidence}");
         }
      }
   }
}

After some minor fixes and shifting the configuration to an appsettings file the application compiled. I tested the implementation with sample “toaster” image from the YoloSharp Github repository

The console application output looked reasonable

I’m pretty confident the input image was a toaster.

Summary

The Copilot prompts to generate code which uses Ultralytics YoloV8 and Compunet YoloSharp and may have produced better code with some “prompt engineering”. Using Visual Studio intellisense the generated code was easy to fix.

The Copilot generated code in this post is not suitable for production

IoT and AI Building Edge AI with AI- Introduction

Introduction

Recently, there have been mainstream media articles (Forbes, Wired-Video games , Wired-Copilot, BBC, The Guardian etc.), about how Artificial Intelligence (AI) could soon replace developers.

I have been using Github Copilot, mainly for “enhanced” Visual Studio IntelliSense, code snippets, and refactoring. I have also found Github Copilot generated code samples and more context aware searching of documentation really useful. Overall, the experience has been positive with limited hallucinations and my productivity has got better as my “prompt engineer” skills improved.

Initially, I started building “hobbyist” AI applications for the edge with an Azure Percept and for customer projects use Ultralytics Yolo, Azure Machine Learning, Azure Cognitive Services, ML.Net, Open Neural Network Exchange (ONNX), Nvidia Jeston Modules, Seeedstudio reComputer Industrial J3011 – Fanless Edge AI Devices etc.

After some discussion with my co-workers I decided to explore how much Github Copilot helped building a “non-trivial” computer vision Proof of Concept (PoC). In previous blog posts I have written about capturing still images from a Security Camera so figured that was a good place to start.

Even though I have been using Copilot for a while I still say please.

using System;
using System.IO;
using System.Net.Http;
using System.Threading.Tasks;

class Program
{
    static async Task Main(string[] args)
    {
        string cameraUrl = "http://your-security-camera-url/image.jpg"; // Replace with your security camera URL
        string savePath = "C:\\path\\to\\save\\image.jpg"; // Replace with the path where you want to save the image

        using (HttpClient client = new HttpClient())
        {
            try
            {
                HttpResponseMessage response = await client.GetAsync(cameraUrl);
                response.EnsureSuccessStatusCode();

                byte[] imageBytes = await response.Content.ReadAsByteArrayAsync();
                await File.WriteAllBytesAsync(savePath, imageBytes);

                Console.WriteLine("Image retrieved and saved successfully.");
            }
            catch (Exception ex)
            {
                Console.WriteLine($"An error occurred: {ex.Message}");
            }
        }
    }
}

The generated code compiled first time, looked “ok” and worked with some of my security cameras when the cameraurl and save path were modified

I then modified the code so “sensitive” information was not stored in code or configuration files.

//using System;
//using System.IO;
//using System.Net.Http;
//using System.Reflection;
//using System.Threading.Tasks;

using Microsoft.Extensions.Configuration;

class Program
{
   static async Task Main(string[] args)
   {
      //string cameraUrl = "http://your-security-camera-url/image.jpg"; // Replace with your security camera URL
      //string savePath = "C:\\path\\to\\save\\image.jpg"; // Replace with the path where you want to save the image
      Model.ApplicationSettings applicationSettings;

   Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} 0.2.CameraHTTPClient starting");
#if RELEASE
         Console.WriteLine("RELEASE");
#else
      Console.WriteLine("DEBUG");
#endif
      // load the app settings into configuration
      var configuration = new ConfigurationBuilder()
           .AddJsonFile("appsettings.json", false, true)
      .AddUserSecrets<Program>()
      .Build();

      applicationSettings = configuration.GetSection("ApplicationSettings").Get<Model.ApplicationSettings>();

      using (HttpClient client = new HttpClient())
      {
         try
         {
            HttpResponseMessage response = await client.GetAsync(applicationSettings.CameraUrl);
            response.EnsureSuccessStatusCode();

            byte[] imageBytes = await response.Content.ReadAsByteArrayAsync();
            await File.WriteAllBytesAsync(applicationSettings.SavePath, imageBytes);

            Console.WriteLine("Image retrieved and saved successfully.");
         }
         catch (Exception ex)
         {
            Console.WriteLine($"An error occurred: {ex.Message}");
         }
      }
   }
}

namespace Model
{
   public class ApplicationSettings
   {
      public string CameraUrl { get; set; } = "";

      public string SavePath { get; set; } = "Images";
   }
}

Several of my security cameras (e.g. HILook T250H) required client to authentication so I added NetworkCredential my Copilot prompt.

// please write c# console application that uses httpclient and an httpget to retrieve image from security camera with NetworkCredential security
//
// Sure! Here's a C# console application that uses HttpClient and HttpGet to retrieve an image from a security camera with NetworkCredential security: 
// In this example:
//
// Replace http://your-security-camera-url/image.jpg with the actual URL of your security camera's image.
//
// Replace C:\\path\\to\\save\\image.jpg with the path where you want to save the retrieved image.
//
// Replace your-username and your-password with your actual credentials.
//
// This application uses HttpClient with NetworkCredential to authenticate the request, retrieves the image as a byte array, and saves it to the specified path. If there's an error during the process, it will be caught and displayed in the console.
//
// Happy coding! 🚀
//using System;
//using System.IO;
using System.Net;
//using System.Net.Http;
//using System.Threading.Tasks;

using Microsoft.Extensions.Configuration;

class Program
{
   static async Task Main(string[] args)
   {
      //string cameraUrl = "http://your-security-camera-url/image.jpg"; // Replace with your security camera URL
      //string savePath = "C:\\path\\to\\save\\image.jpg"; // Replace with the path where you want to save the image
      //string username = "your-username"; // Replace with your username
      //string password = "your-password"; // Replace with your password
      Model.ApplicationSettings applicationSettings;

      Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} 0.3.CameraHTTPClient starting");
#if RELEASE
         Console.WriteLine("RELEASE");
#else
      Console.WriteLine("DEBUG");
#endif
      // load the app settings into configuration
      var configuration = new ConfigurationBuilder()
           .AddJsonFile("appsettings.json", false, true)
      .AddUserSecrets<Program>()
      .Build();

      applicationSettings = configuration.GetSection("ApplicationSettings").Get<Model.ApplicationSettings>();

      using (HttpClientHandler handler = new HttpClientHandler { Credentials = new NetworkCredential(applicationSettings.Username, applicationSettings.Password) })
      using (HttpClient client = new HttpClient(handler))
      {
         try
         {
            HttpResponseMessage response = await client.GetAsync(applicationSettings.CameraUrl);
            response.EnsureSuccessStatusCode();

            byte[] imageBytes = await response.Content.ReadAsByteArrayAsync();
            await File.WriteAllBytesAsync(applicationSettings.SavePath, imageBytes);

            Console.WriteLine("Image retrieved and saved successfully.");
         }
         catch (Exception ex)
         {
            Console.WriteLine($"An error occurred: {ex.Message}");
         }
      }
   }
}

namespace Model
{
   public class ApplicationSettings
   {
      public string CameraUrl { get; set; } = "";

      public string SavePath { get; set; } = "Images";

      public string Username { get; set; } = "";

      public string Password { get; set; } = "";
   }
}

My Visual Studio 2022 solution with a project for each Copilot generated sample.

Summary

The Copilot generated code for my three “trivial” PoC applications compiled and worked with minimal modifications.

The Copilot generated code in this post is not suitable for production

Timer, using, Garbage Collection & Await

Initially my Ultralytics YoloV8 based unicorn/not unicorn classification model test application would run overnight processing images retrieved from a Security Camera using an HTTP GET.

A unicorn with 86% confidence
Test Application DEBUG build

When I changed to a release build the System.Threading.Timer TimerCallback would only be called once

Test Application RELEASE build failure

After some debugging I found that if I added a using statement the TimerCallback was called reliably.

static async Task Main()
{
   Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} SecurityCameraImage starting");
#if RELEASE
   Console.WriteLine("RELEASE");
#else
   Console.WriteLine("DEBUG");
#endif
   try
   {
      // load the app settings into configuration
      var configuration = new ConfigurationBuilder()
            .AddJsonFile("appsettings.json", false, true)
      .AddUserSecrets<Program>()
      .Build();

      _applicationSettings = configuration.GetSection("ApplicationSettings").Get<Model.ApplicationSettings>();

      Console.WriteLine($" {DateTime.UtcNow:yy-MM-dd HH:mm:ss} press <ctrl^c> to exit Due:{_applicationSettings.ImageTimerDue} Period:{_applicationSettings.ImageTimerPeriod}");

      NetworkCredential networkCredential = new(_applicationSettings.CameraUserName, _applicationSettings.CameraUserPassword);

      using (_httpClient = new HttpClient(new HttpClientHandler { PreAuthenticate = true, Credentials = networkCredential }))
      {
#if true
         Console.WriteLine("Using - NO");
         Timer imageUpdatetimer = new(ImageUpdateTimerCallback, null, _applicationSettings.ImageTimerDue, _applicationSettings.ImageTimerPeriod); // Debug only
#else
         Console.WriteLine("Using - YES");
         using Timer imageUpdatetimer = new(ImageUpdateTimerCallback,null, _applicationSettings.ImageTimerDue, _applicationSettings.ImageTimerPeriod); // Release works
#endif
         {
            try
            {
               await Task.Delay(Timeout.Infinite);
            }
            catch (TaskCanceledException)
            {
               Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} Application shutown requested");
            }
         }
      }
   }
   catch (Exception ex)
   {
      Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} Application shutown failure {ex.Message}", ex);
   }
}

private static async void ImageUpdateTimerCallback(object? state)
{
   Console.WriteLine("Timer start");

   // Just incase - stop code being called while photo already in progress
   if (_cameraBusy)
   {
      return;
   }
   _cameraBusy = true;

   try
   {
      Console.WriteLine($" {DateTime.UtcNow:yy-MM-dd HH:mm:ss.fff} Security Camera Image download start");

      using (Stream cameraStream = await _httpClient.GetStreamAsync(_applicationSettings.CameraUrl))
      using (FileStream fileStream = File.Open(_applicationSettings.ImageInputPath, FileMode.Create))
      {
         await cameraStream.CopyToAsync(fileStream);
      }

      Console.WriteLine($" {DateTime.UtcNow:yy-MM-dd HH:mm:ss:fff} Security Camera Image download done");
   }
   catch (Exception ex)
   {
      Console.WriteLine($"{DateTime.UtcNow:yy-MM-dd HH:mm:ss} Security camera image download failed {ex.Message}");
   }
   finally
   {
      _cameraBusy = false;
   }
   Console.WriteLine("Timer done");
}

I assume that in release build the code was “optimised” and the Garbage Collector(GC) was more aggressively freeing resources.

Test Application RELEASE Build running