Random wanderings through Microsoft Azure esp. PaaS plumbing, the IoT bits, AI on Micro controllers, AI on Edge Devices, .NET nanoFramework, .NET Core on *nix and ML.NET+ONNX
My Azure IoT Hub messages have properties for the LoRaWAN port (required), confirmed (which defaults to false), priority (which defaults to Normal) and queue(which defaults to Replace). The priority and queue enumerations are defined in TTNcommon.cs.
I used the enumeration for message priority in the JSON payload and MQTT downlink message topic.
Initially when I published a message it wasn’t sent and there was no error. It was a while before I noticed that the queue setting was being being converted to the text “Push” or “Replace” based on the enumeration value name (The priority value was in the JSON which is case insensitive). I did wonder if the tenantId and ApplicationId were also case sensitive so I ensured consistent capitalisation with ToLower();
My Azure IoT Central client application displays the generated message including the decoded payload field which is used by the built in Low Power Protocol(LPP) decoder/encoder and other custom encoders/decoders.
Azure IoT Central commands for TTN/TTI integration
From the “Device Commands” form I can send commands and a queued commands which have float parameters or object parameters which contain one or more float values in a JSON payload.
For commands which call the methodHander which was been registered by calling SetMethodDefaultHandlerAsync the request payload can be JSON or plain text. If the payload is valid JSON it is “grafted”(couldn’t think of a better word) into the decoded_payload field. If the payload is not valid a JSON object with the method name as the “name” and the text payload as the value is added the decoded_payload.
private static async Task<MethodResponse> MethodCallbackDefaultHandler(MethodRequest methodRequest, object userContext)
{
AzureIoTMethodHandlerContext receiveMessageHandlerConext = (AzureIoTMethodHandlerContext)userContext;
Console.WriteLine($"Default handler method {methodRequest.Name} was called.");
Console.WriteLine($"Payload:{methodRequest.DataAsJson}");
Console.WriteLine();
if (string.IsNullOrWhiteSpace(methodRequest.Name))
{
Console.WriteLine($" Method Request Name null or white space");
return new MethodResponse(400);
}
string payloadText = Encoding.UTF8.GetString(methodRequest.Data);
if (string.IsNullOrWhiteSpace(payloadText))
{
Console.WriteLine($" Payload null or white space");
return new MethodResponse(400);
}
// At this point would check to see if Azure DeviceClient is in cache, this is so nasty
if ( String.Compare( methodRequest.Name, "Analog_Output_1", true) ==0 )
{
Console.WriteLine($" Device not found");
return new MethodResponse(UTF8Encoding.UTF8.GetBytes("Device not found"), 404);
}
JObject payload;
if (IsValidJSON(payloadText))
{
payload = JObject.Parse(payloadText);
}
else
{
payload = new JObject
{
{ methodRequest.Name, payloadText }
};
}
string downlinktopic = $"v3/{receiveMessageHandlerConext.ApplicationId}@{receiveMessageHandlerConext.TenantId}/devices/{receiveMessageHandlerConext.DeviceId}/down/push";
DownlinkPayload downlinkPayload = new DownlinkPayload()
{
Downlinks = new List<Downlink>()
{
new Downlink()
{
Confirmed = false,
//PayloadRaw = messageBody,
PayloadDecoded = payload,
Priority = DownlinkPriority.Normal,
Port = 10,
/*
CorrelationIds = new List<string>()
{
methodRequest.LockToken
}
*/
}
}
};
Console.WriteLine($"TTN Topic :{downlinktopic}");
Console.WriteLine($"TTN downlink JSON :{JsonConvert.SerializeObject(downlinkPayload, Formatting.Indented)}");
return new MethodResponse(200);
}
Configuration of unqueued Commands with a typed payloadThe output of my test harness for a Command for a typed payloadConfiguring fields of object payload(JSON)
A JSON request payload also supports downlink messages with more that one value.
The output of my test harness for a Command with an object payload(JSON)
For queued commands which call the ReceiveMessageHandler which has was registered by calling SetReceiveMessageHandler the request payload is JSON or plain text.
When I initiated an Analog queued command the message handler was invoked with the name of the command capability (Analog_Output_2) in a message property called “method-name”. For a typed parameter the message content was a string representation of the value. For an object parameter the payload contains a JSON representation of the request field(s)
The output of my test harness for a Queued Command with a typed payload
A JSON request payload supports downlink message with more that one value.
The output of my test harness for a Queued Command with an object payload(JSON)
The context information for both comments and queued commands provides additional information required to construct the MQTT topic for publishing the downlink messages.
If the device is not known the Abandon method will be called immediately. For command messages Completed will be called as soon as the message is “sent”
With object based parameters the request JSON could contain more than one value though the validation of user provided information didn’t appear to be as robust.
Object parameter schema definition
I “migrated” my third preconfigured device to the CommandRequest template to see how the commands with Request parameters interacted with my PoC application.
After “migrating” my device I went back and created a Template view so I could visualise the simulated telemetry from my PoC application and provide a way to initiate commands (Didn’t really need four command tiles as they all open the Device commands form).
CommandRequest device template default view
From the Device Commands form I could send commands and a queued commands which had analog or digital parameters.
Device Three Command Tab
When I initiated an Analog non-queued command the default method handler was invoked with the name of the command capability (Analog_Output_1) as the method name and the payload contained a JSON representation of the request values(s). With a typed parameter a string representation of the value was in the message payload. With a typed parameter a string representation of the value was in the message payload rather than JSON.
Console application displaying Analog request and Analog Request queued commands
When I initiated an Analog queued command the message handler was invoked with the name of the command capability (Analog_Output_2) in a message property called “method-name” and the payload contained a JSON representation of the request value(s). With a typed parameter a string representation of the value was in the message payload rather than JSON.
When I initiated a Digital non-queued command the default method handler was invoked with the name of the command capability (Digital_Output_1) as the method name and the payload contained a JSON representation of the request values(s). With a typed parameter a string representation of the value was in the message payload rather than JSON.
Console application displaying Digital request and Digital Request queued commands
When I initiated a Digital queued command the message handler was invoked with the name of the command capability(Digital_Output_2) in a message property called “method-name” and the payload contained a JSON representation of the request value(s). With a typed parameter a string representation of the value was in the message payload rather than JSON.
The validation of user input wasn’t as robust as I expected, with problems selecting checkboxes with a mouse when there were several Boolean fields. I often had to click on a nearby input field and use the TAB button to navigate to the desired checkbox. I also had problems with ISO 8601 format date validation as the built in Date Picker returned a month, day, year date which was not editable and wouldn’t pass validation.
The next logical step would be to look at commands with a Response parameter but as the MQTT interface is The Things Network(TTN) and The Things Industries(TTI) is asynchronous and devices reporting every 5 minutes to a couple of times a day there could be a significant delay between sending a message and receiving an optional delivery confirmation or response.
I have been struggling with making The Things Network(TTN) and The Things Industries(TTI) uplink/downlink messages work well Azure IoT Central. To explore different messaging approaches I have built a proof of Concept(PoC) application which simulates TTN/TTI connectivity to an Azure IoT Hub, or Azure IoT Central.
This blog post is about queued and non queued Cloud to Device(C2D) commands without request or response parameters. I have mostly used non queued commands in other projects (my Azure IoT HubLoRa and RF24L01 gateways) to “Restart” devices etc..
From the Device Commands tab I can could non queued and a queued commands
Device Two Commands tab
When I sent a non-queued command the default method handler was invoked with the name of the command capability (Digital_Output_0) as the method name and an empty payload. In the Azure IoT Central interface I couldn’t see any difference for successful (HTTP 200 OK) or failure (HTTP 400 Bad Request or HTTP 404 Not Found) responses. If the application was not running the command failed immediately.
When I sent a queued command the message handler was invoked with the name of the command capability(Digital_Output_1) in a message property called “method-name” and the payload contained only an “@” character.
Console application displaying queued call
If the application was not running the command was queued until the Console application was started. When the console application was running and AbandonAsync was called rather than CompleteAsync the message was retried 10 times. If RejectAsync was called rather than CompleteAsync the message was deleted from the queue and not retried. There didn’t appear to be any difference for the displayed Azure IoT Central or Azure IoT Hub explorer results when AbandonAsync or RejectAsync were called.
I also created a personal dashboard to visualise the telemetry data and initiate commands. The way the two commands were presented on the dashboard was quite limited so I will go back to the documentation and see what I missed
I have been struggling with making The Things Network(TTN) and The Things Industries(TTI) uplink/downlink messages Azure IoT Central compatible. To explore the messaging approaches used I have built a proof of Concept(PoC) application which simulates TTN/TTI connectivity to an Azure IoT Hub, or Azure IoT Central.
I then “migrated” the first device to my BasicTelemetry template
Migrating a device to TelemetryBasic template
I then went back and created a Template view to visualise the telemetry from my console application.
TelemetryBasic device template default view
Then I configured a preview device so the template view was populated with “realistic” data.
TelemetryBasic device template default view configuring a device as data source
The console application simulates a digital input (random true/false), analog input (random value between 0.0 and 1.0) and a Global Positioning System(GPS) location (Christchurch Anglican Cathedral with a random latitude, longitude and altitude offset) .
The first step was to add the The Things Network(TTN)V3 Tennant ID to the context information as it is required for the downlink Message Queue Telemetry Transport (MQTT) publish topic.
namespace devMobile.TheThingsNetwork.Models
{
public class AzureIoTHubReceiveMessageHandlerContext
{
public string TenantId { get; set; }
public string DeviceId { get; set; }
public string ApplicationId { get; set; }
}
}
To send a message to a LoRaWAN device in addition to the payload, TTN needs the port number and optionally a confirmation required flag, message priority, queueing type and correlation ids.
With my implementation the confirmation required flag, message priority, and queueing type are Azure IoT Hub message properties and the messageid is used as a correlation id.
private async static Task AzureIoTHubClientReceiveMessageHandler(Message message, object userContext)
{
bool confirmed;
byte port;
DownlinkPriority priority;
string downlinktopic;
try
{
AzureIoTHubReceiveMessageHandlerContext receiveMessageHandlerConext = (AzureIoTHubReceiveMessageHandlerContext)userContext;
DeviceClient deviceClient = (DeviceClient)DeviceClients.Get(receiveMessageHandlerConext.DeviceId);
if (deviceClient == null)
{
Console.WriteLine($" UplinkMessageReceived unknown DeviceID: {receiveMessageHandlerConext.DeviceId}");
await deviceClient.RejectAsync(message);
return;
}
using (message)
{
Console.WriteLine();
Console.WriteLine();
Console.WriteLine($"{DateTime.UtcNow:HH:mm:ss} Azure IoT Hub downlink message");
Console.WriteLine($" ApplicationID: {receiveMessageHandlerConext.ApplicationId}");
Console.WriteLine($" DeviceID: {receiveMessageHandlerConext.DeviceId}");
#if DIAGNOSTICS_AZURE_IOT_HUB
Console.WriteLine($" Cached: {DeviceClients.Contains(receiveMessageHandlerConext.DeviceId)}");
Console.WriteLine($" MessageID: {message.MessageId}");
Console.WriteLine($" DeliveryCount: {message.DeliveryCount}");
Console.WriteLine($" EnqueuedTimeUtc: {message.EnqueuedTimeUtc}");
Console.WriteLine($" SequenceNumber: {message.SequenceNumber}");
Console.WriteLine($" To: {message.To}");
#endif
string messageBody = Encoding.UTF8.GetString(message.GetBytes());
Console.WriteLine($" Body: {messageBody}");
#if DOWNLINK_MESSAGE_PROPERTIES_DISPLAY
foreach (var property in message.Properties)
{
Console.WriteLine($" Key:{property.Key} Value:{property.Value}");
}
#endif
if (!message.Properties.ContainsKey("Confirmed"))
{
Console.WriteLine(" UplinkMessageReceived missing confirmed property");
await deviceClient.RejectAsync(message);
return;
}
if (!bool.TryParse(message.Properties["Confirmed"], out confirmed))
{
Console.WriteLine(" UplinkMessageReceived confirmed property invalid");
await deviceClient.RejectAsync(message);
return;
}
if (!message.Properties.ContainsKey("Priority"))
{
Console.WriteLine(" UplinkMessageReceived missing priority property");
await deviceClient.RejectAsync(message);
return;
}
if (!Enum.TryParse(message.Properties["Priority"], true, out priority))
{
Console.WriteLine(" UplinkMessageReceived priority property invalid");
await deviceClient.RejectAsync(message);
return;
}
if (priority == DownlinkPriority.Undefined)
{
Console.WriteLine(" UplinkMessageReceived priority property undefined value invalid");
await deviceClient.RejectAsync(message);
return;
}
if (!message.Properties.ContainsKey("Port"))
{
Console.WriteLine(" UplinkMessageReceived missing port number property");
await deviceClient.RejectAsync(message);
return;
}
if (!byte.TryParse( message.Properties["Port"], out port))
{
Console.WriteLine(" UplinkMessageReceived port number property invalid");
await deviceClient.RejectAsync(message);
return;
}
if ((port < Constants.PortNumberMinimum) || port > (Constants.PortNumberMaximum))
{
Console.WriteLine($" UplinkMessageReceived port number property invalid value must be between {Constants.PortNumberMinimum} and {Constants.PortNumberMaximum}");
await deviceClient.RejectAsync(message);
return;
}
if (!message.Properties.ContainsKey("Queue"))
{
Console.WriteLine(" UplinkMessageReceived missing queue property");
await deviceClient.RejectAsync(message);
return;
}
switch(message.Properties["Queue"].ToLower())
{
case "push":
downlinktopic = $"v3/{receiveMessageHandlerConext.ApplicationId}@{receiveMessageHandlerConext.TenantId}/devices/{receiveMessageHandlerConext.DeviceId}/down/push";
break;
case "replace":
downlinktopic = $"v3/{receiveMessageHandlerConext.ApplicationId}@{receiveMessageHandlerConext.TenantId}/devices/{receiveMessageHandlerConext.DeviceId}/down/replace";
break;
default:
Console.WriteLine(" UplinkMessageReceived missing queue property invalid value");
await deviceClient.RejectAsync(message);
return;
}
DownlinkPayload Payload = new DownlinkPayload()
{
Downlinks = new List<Downlink>()
{
new Downlink()
{
Confirmed = confirmed,
PayloadRaw = messageBody,
Priority = priority,
Port = port,
CorrelationIds = new List<string>()
{
message.MessageId
}
}
}
};
var mqttMessage = new MqttApplicationMessageBuilder()
.WithTopic(downlinktopic)
.WithPayload(JsonConvert.SerializeObject(Payload))
.WithAtLeastOnceQoS()
.Build();
await mqttClient.PublishAsync(mqttMessage);
// Need to look at confirmation requirement ack, nack maybe failed & sent
await deviceClient.CompleteAsync(message);
Console.WriteLine();
}
}
catch (Exception ex)
{
Debug.WriteLine("UplinkMessageReceived failed: {0}", ex.Message);
}
}
To “smoke test”” my implementation I used Azure IoT Explorer to send a C2D telemetry message
Azure IoT Hub Explorer send message form with payload and message properties
The PoC console application then forwarded the message to TTN using MQTT to be sent(which fails)
PoC application sending message then displaying result
The TTN live data display shows the message couldn’t be delivered because my test LoRaWAN device has not been activiated.
TTN Live Data display with message delivery failure
// At this point all the AzureIoT Hub deviceClients setup and ready to go so can enable MQTT receive
mqttClient.UseApplicationMessageReceivedHandler(new MqttApplicationMessageReceivedHandlerDelegate(e => MqttClientApplicationMessageReceived(e)));
// This may shift to individual device subscriptions
string uplinkTopic = $"v3/{options.MqttApplicationID}/devices/+/up";
await mqttClient.SubscribeAsync(uplinkTopic, MQTTnet.Protocol.MqttQualityOfServiceLevel.AtLeastOnce);
//string queuedTopic = $"v3/{options.MqttApplicationID}/devices/+/queued";
//await mqttClient.SubscribeAsync(queuedTopic, MQTTnet.Protocol.MqttQualityOfServiceLevel.AtLeastOnce);
The additional commented out subscriptions are for the processing of downlink messages
The MQTTNet received message handler uses the last segment of the topic to route messages to a method for processing
The UplinkMessageReceived method deserialises the message payload, retrieves device context information from the local ObjectCache, adds relevant uplink messages fields (including the raw payload), then if the message has been unpacked by a TTN Decoder, the message fields are added as well.
static async Task UplinkMessageReceived(MqttApplicationMessageReceivedEventArgs e)
{
try
{
PayloadUplinkV3 payload = JsonConvert.DeserializeObject<PayloadUplinkV3>(e.ApplicationMessage.ConvertPayloadToString());
string applicationId = payload.EndDeviceIds.ApplicationIds.ApplicationId;
string deviceId = payload.EndDeviceIds.DeviceId;
int port = payload.UplinkMessage.Port;
...
DeviceClient deviceClient = (DeviceClient)DeviceClients.Get(deviceId);
if (deviceClient == null)
{
Console.WriteLine($" UplinkMessageReceived unknown DeviceID: {deviceId}");
return;
}
JObject telemetryEvent = new JObject();
telemetryEvent.Add("DeviceID", deviceId);
telemetryEvent.Add("ApplicationID", applicationId);
telemetryEvent.Add("Port", port);
telemetryEvent.Add("PayloadRaw", payload.UplinkMessage.PayloadRaw);
// If the payload has been unpacked in TTN backend add fields to telemetry event payload
if (payload.UplinkMessage.PayloadDecoded != null)
{
EnumerateChildren(telemetryEvent, payload.UplinkMessage.PayloadDecoded);
}
// Send the message to Azure IoT Hub/Azure IoT Central
using (Message ioTHubmessage = new Message(Encoding.ASCII.GetBytes(JsonConvert.SerializeObject(telemetryEvent))))
{
// Ensure the displayed time is the acquired time rather than the uploaded time.
//ioTHubmessage.Properties.Add("iothub-creation-time-utc", payloadObject.Metadata.ReceivedAtUtc.ToString("s", CultureInfo.InvariantCulture));
ioTHubmessage.Properties.Add("ApplicationId", applicationId);
ioTHubmessage.Properties.Add("DeviceId", deviceId);
ioTHubmessage.Properties.Add("port", port.ToString());
await deviceClient.SendEventAsync(ioTHubmessage);
}
}
catch( Exception ex)
{
Debug.WriteLine("UplinkMessageReceived failed: {0}", ex.Message);
}
}
private static void EnumerateChildren(JObject jobject, JToken token)
{
if (token is JProperty property)
{
if (token.First is JValue)
{
// Temporary dirty hack for Azure IoT Central compatibility
if (token.Parent is JObject possibleGpsProperty)
{
if (possibleGpsProperty.Path.StartsWith("GPS_", StringComparison.OrdinalIgnoreCase))
{
if (string.Compare(property.Name, "Latitude", true) == 0)
{
jobject.Add("lat", property.Value);
}
if (string.Compare(property.Name, "Longitude", true) == 0)
{
jobject.Add("lon", property.Value);
}
if (string.Compare(property.Name, "Altitude", true) == 0)
{
jobject.Add("alt", property.Value);
}
}
}
jobject.Add(property.Name, property.Value);
}
else
{
JObject parentObject = new JObject();
foreach (JToken token2 in token.Children())
{
EnumerateChildren(parentObject, token2);
jobject.Add(property.Name, parentObject);
}
}
}
else
{
foreach (JToken token2 in token.Children())
{
EnumerateChildren(jobject, token2);
}
}
}
There is also some basic reformatting of the messages for Azure IoT Central
TTN Simulate uplink message with GPS location payload.Nasty console application processing uplink messageMessage from LoRaWAN device displayed in Azure IoT Explorer
The first version of the Azure function code proof of concept(PoC) was very compact
namespace MQTTnetAzureFunction
{
using System;
using System.Text;
using Microsoft.Azure.WebJobs;
using Microsoft.Extensions.Logging;
using CaseOnline.Azure.WebJobs.Extensions.Mqtt;
using CaseOnline.Azure.WebJobs.Extensions.Mqtt.Messaging;
using CaseOnline.Azure.WebJobs.Extensions.Mqtt.Config;
using CaseOnline.Azure.WebJobs.Extensions.Mqtt.Bindings;
using MQTTnet.Client.Options;
using MQTTnet.Extensions.ManagedClient;
public static class Subscribe
{
[FunctionName("UplinkMessageProcessor")]
public static void UplinkMessageProcessor(
[MqttTrigger("v3/application123456789012345/devices/+/up", ConnectionString = "TTNMQTTConnectionString")] IMqttMessage message,
IMqttMessage message,
ILogger log)
{
var body = Encoding.UTF8.GetString(message.GetMessage());
log.LogInformation($"Advanced: message from topic {message.Topic} \nbody: {body}");
}
}
}
I configured the TTNMQTTConnectionString in the application’s local.settings.json file
This was a good start but I need to be able to configure the MQTT topic for deployments.
After looking at the binding source code plus some trial and error based on the AdvancedConfiguration sample I have a nasty PoC
public static class Subscribe
{
[FunctionName("UplinkMessageProcessor")]
public static void UplinkMessageProcessor(
[MqttTrigger(typeof(ExampleMqttConfigProvider), "v3/%TopicName%/devices/+/up")] IMqttMessage message,
ILogger log)
{
var body = Encoding.UTF8.GetString(message.GetMessage());
log.LogInformation($"Advanced: message from topic {message.Topic} \nbody: {body}");
}
}
public class MqttConfigExample : CustomMqttConfig
{
public override IManagedMqttClientOptions Options { get; }
public override string Name { get; }
public MqttConfigExample(string name, IManagedMqttClientOptions options)
{
Options = options;
Name = name;
}
}
public class ExampleMqttConfigProvider : ICreateMqttConfig
{
public CustomMqttConfig Create(INameResolver nameResolver, ILogger logger)
{
var connectionString = new MqttConnectionString(nameResolver.Resolve("TTNMQTTConnectionString"), "CustomConfiguration");
var options = new ManagedMqttClientOptionsBuilder()
.WithAutoReconnectDelay(TimeSpan.FromSeconds(5))
.WithClientOptions(new MqttClientOptionsBuilder()
.WithClientId(connectionString.ClientId.ToString())
.WithTcpServer(connectionString.Server, connectionString.Port)
.WithCredentials(connectionString.Username, connectionString.Password)
.Build())
.Build();
return new MqttConfigExample("CustomConnection", options);
}
}
The TTNMQTTConnectionString and TopicName can be configured in the application’s local.settings.json file
While building these PoCs I have learnt a lot about the way that the TTN V3 RESTful and MQTT APIs work and this is the first in a series of posts about linking them together. My plan is to start with yet another .NetCore Console application which hosts both the MQTT and Azure IoT Hub DeviceClient (using the Advanced Message Queueing Protocol(AMQP)) client implementations. I’m using MQTTnet to build my data API client and used NSwag by Richo Suter to generate my RESTful client from the TTN provided swagger file.
In this PoC I’m using the commandlineParserNuGet package to the reduce the amount of code required to process command line parameters and make it more robust. This PoC has a lot of command line parameters which would have been painful to manually parse and validate.
public class CommandLineOptions
{
[Option('u', "APIbaseURL", Required = false, HelpText = "TTN Restful API URL.")]
public string ApiBaseUrl { get; set; }
[Option('K', "APIKey", Required = true, HelpText = "TTN Restful API APIkey")]
public string ApiKey { get; set; }
[Option('P', "APIApplicationID", Required = true, HelpText = "TTN Restful API ApplicationID")]
public string ApiApplicationID { get; set; }
[Option('D', "DeviceListPageSize", Required = true, HelpText = "The size of the pages used to retrieve EndDevice configuration")]
public int DevicePageSize { get; set; }
[Option('S', "MQTTServerName", Required = true, HelpText = "TTN MQTT API server name")]
public string MqttServerName { get; set; }
[Option('A', "MQTTAccessKey", Required = true, HelpText = "TTN MQTT API access key")]
public string MqttAccessKey { get; set; }
[Option('Q', "MQTTApplicationID", Required = true, HelpText = "TTN MQTT API ApplicationID")]
public string MqttApplicationID { get; set; }
[Option('C', "MQTTClientName", Required = true, HelpText = "TTN MQTT API Client ID")]
public string MqttClientID { get; set; }
[Option('Z', "AzureIoTHubConnectionString", Required = true, HelpText = "Azure IoT Hub Connection string")]
public string AzureIoTHubconnectionString { get; set; }
}
To keep things simple in this PoC I’m using an Azure IoT Hub specific (rather than a device specific connection string)
After some trial and error I found the order of execution was important
Open MQTTnet connection to TTN host (but don’t configure any subscriptions)
Configure connection to TTN RESTful API
Retrieve list of V3EndDevices (paginated), then for each V3EndDevice
Open connection to Azure IoT Hub using command line connection string + TTN Device ID
Call DeviceClient.SetReceiveMessageHandlerAsync to specify ReceiveMessageCallback and additional context information for processing Azure IoT Hub downlink messages.
Store DeviceClient instance in ObjectCache using DeviceID as key
Configure the MQTTnet recived message handler
Subscribe to uplink messages from all the V3EndDevices in the specified application.
private static async Task ApplicationCore(CommandLineOptions options)
{
MqttFactory factory = new MqttFactory();
mqttClient = factory.CreateMqttClient();
#if DIAGNOSTICS
Console.WriteLine($"baseURL: {options.ApiBaseUrl}");
Console.WriteLine($"APIKey: {options.ApiKey}");
Console.WriteLine($"ApplicationID: {options.ApiApplicationID}");
Console.WriteLine($"AazureIoTHubconnectionString: {options.AzureIoTHubconnectionString}");
Console.WriteLine();
#endif
try
{
// First configure MQTT, open connection and wire up disconnection handler.
// Can't wire up MQTT received handler as at this stage AzureIoTHub devices not connected.
mqttOptions = new MqttClientOptionsBuilder()
.WithTcpServer(options.MqttServerName)
.WithCredentials(options.MqttApplicationID, options.MqttAccessKey)
.WithClientId(options.MqttClientID)
.WithTls()
.Build();
mqttClient.UseDisconnectedHandler(new MqttClientDisconnectedHandlerDelegate(e => MqttClientDisconnected(e)));
await mqttClient.ConnectAsync(mqttOptions);
// Prepare the HTTP client to be used in the TTN device enumeration
using (HttpClient httpClient = new HttpClient())
{
EndDeviceRegistryClient endDeviceRegistryClient = new EndDeviceRegistryClient(options.ApiBaseUrl, httpClient)
{
ApiKey = options.ApiKey
};
// Retrieve list of devices page by page
V3EndDevices endDevices = await endDeviceRegistryClient.ListAsync(
options.ApiApplicationID,
field_mask_paths: DevicefieldMaskPaths,
limit: options.DevicePageSize);
if ((endDevices != null) && (endDevices.End_devices != null)) // If no devices returns null rather than empty list
{
foreach (V3EndDevice endDevice in endDevices.End_devices)
{
// Display the device info+attributes then connect device to Azure IoT Hub
#if DEVICE_FIELDS_MINIMUM
Console.WriteLine($"EndDevice ID: {endDevice.Ids.Device_id}");
#else
Console.WriteLine($"Device ID: {endDevice.Ids.Device_id} Name: {endDevice.Name} Description: {endDevice.Description}");
Console.WriteLine($" CreatedAt: {endDevice.Created_at:dd-MM-yy HH:mm:ss} UpdatedAt: {endDevice.Updated_at:dd-MM-yy HH:mm:ss}");
#endif
#if DEVICE_ATTRIBUTES_DISPLAY
if (endDevice.Attributes != null)
{
Console.WriteLine(" EndDevice attributes");
foreach (KeyValuePair<string, string> attribute in endDevice.Attributes)
{
Console.WriteLine($" Key: {attribute.Key} Value: {attribute.Value}");
}
}
#endif
try
{
DeviceClient deviceClient = DeviceClient.CreateFromConnectionString(
options.AzureIoTHubconnectionString,
endDevice.Ids.Device_id,
TransportType.Amqp_Tcp_Only);
await deviceClient.OpenAsync();
await deviceClient.SetReceiveMessageHandlerAsync(
AzureIoTHubClientReceiveMessageHandler,
new AzureIoTHubReceiveMessageHandlerContext()
{
DeviceId = endDevice.Ids.Device_id,
ApplicationId = endDevice.Ids.Application_ids.Application_id,
});
DeviceClients.Add(endDevice.Ids.Device_id, deviceClient, cacheItemPolicy);
}
catch( Exception ex)
{
Console.WriteLine($"Azure IoT Hub OpenAsync failed {ex.Message}");
}
}
}
}
// At this point all the AzureIoT Hub deviceClients setup and ready to go so can enable MQTT receive
mqttClient.UseApplicationMessageReceivedHandler(new MqttApplicationMessageReceivedHandlerDelegate(e => MqttClientApplicationMessageReceived(e)));
// This may shift to individual device subscriptions
string uplinktopic = $"v3/{options.MqttApplicationID}/devices/+/up";
await mqttClient.SubscribeAsync(uplinktopic, MQTTnet.Protocol.MqttQualityOfServiceLevel.AtLeastOnce);
}
catch(Exception ex)
{
Console.WriteLine($"Main {ex.Message}");
Console.WriteLine("Press any key to exit");
Console.ReadLine();
return;
}
while (!Console.KeyAvailable)
{
Console.Write(".");
await Task.Delay(1000);
}
// Consider ways to mop up connections
Console.WriteLine("Press any key to exit");
Console.ReadLine();
}
When I was initially looking at Azure Deviceclient I would of had to have created a thread (which would have been blocked most of the time) for each device. This implementation issued was removed by the introduction of the DeviceClientSetReceiveMessageHandlerAsync method in release 1.33.0.
Currently the application just displays the Cloud to Device(C2D) message payload plus diagnostic information, and the CompleteAsync method is called so the message is dequeued.
Currently the application just displays the Cloud to Device(D2C) message payload plus diagnostic information, displaying the payload fields if the message format has been configured and successfully processed.
This code was written to solve a problem I had debugging and testing an application which processed data from sensors attached to The Things Network(TTN) and I figured others might find it useful.
As part of my series of TTN projects I wanted to verify that the data from a number of LoRaWAN sensors connected to TTN was reasonable and complete. I’m familiar with Microsoft SQL Server so I built a .Net Core console application which uses the TTN Message Queue Telemetry Transport(MQTT) Data API (so it can run alongside my existing TTN integration) to receive messages from the all devices in a TTN application and store them in a database for post processing.
The console application uses MQTTNet to connect to TTN MQTT Data API. It subscribes to an application device uplink topic, then uses a combination of Stackoverflow Dapper with Microsoft SQL Server tables and stored procedures to store the device data points. I re-generated the classes I had used in my other projects, added any obvious missing fields and fine tuned the data types by delving into the TTN V2GO code.
The core of the application is in the MQTTNet application message received handler.
private static void MqttClient_ApplicationMessageReceived(MqttApplicationMessageReceivedEventArgs e)
{
PayloadUplinkV2 payload;
log.InfoFormat($"Receive Start Topic:{e.ApplicationMessage.Topic}");
string connectionString = configuration.GetSection("TTNDatabase").Value;
try
{
payload = JsonConvert.DeserializeObject<PayloadUplinkV2>(e.ApplicationMessage.ConvertPayloadToString());
}
catch (Exception ex)
{
log.Error("DeserializeObject failed", ex);
return;
}
try
{
if (payload.PayloadFields != null)
{
var parameters = new DynamicParameters();
EnumerateChildren(parameters, payload.PayloadFields);
log.Debug($"Parameters:{parameters.ParameterNames.Aggregate((i, j) => i + ',' + j)}");
foreach (string storedProcedure in storedProcedureMappings.Keys)
{
if (Enumerable.SequenceEqual(parameters.ParameterNames, storedProcedureMappings[storedProcedure].Split(',', StringSplitOptions.RemoveEmptyEntries), StringComparer.InvariantCultureIgnoreCase))
{
log.Info($"Payload fields processing with:{storedProcedure}");
using (SqlConnection db = new SqlConnection(connectionString))
{
parameters.Add("@ReceivedAtUtc", payload.Metadata.ReceivedAtUtc);
parameters.Add("@DeviceID", payload.DeviceId);
parameters.Add("@DeviceEui", payload.DeviceEui);
parameters.Add("@ApplicationID", payload.ApplicationId);
parameters.Add("@IsConfirmed", payload.IsConfirmed);
parameters.Add("@IsRetry", payload.IsRetry);
parameters.Add("@Port", payload.Port);
db.Execute(sql: storedProcedure, param: parameters, commandType: CommandType.StoredProcedure);
}
}
}
}
else
{
foreach (string storedProcedure in storedProcedureMappings.Keys)
{
if (string.Compare(storedProcedureMappings[storedProcedure], "payload_raw", true) == 0)
{
log.Info($"Payload raw processing with:{storedProcedure}");
using (SqlConnection db = new SqlConnection(connectionString))
{
var parameters = new DynamicParameters();
parameters.Add("@ReceivedAtUtc", payload.Metadata.ReceivedAtUtc);
parameters.Add("@DeviceID", payload.DeviceId);
parameters.Add("@DeviceEui", payload.DeviceEui);
parameters.Add("@ApplicationID", payload.ApplicationId);
parameters.Add("@IsConfirmed", payload.IsConfirmed);
parameters.Add("@IsRetry", payload.IsRetry);
parameters.Add("@Port", payload.Port);
parameters.Add("@Payload", payload.PayloadRaw);
db.Execute(sql: storedProcedure, param: parameters, commandType: CommandType.StoredProcedure);
}
}
}
}
}
catch (Exception ex)
{
log.Error("Message processing failed", ex);
}
}
For messages with payload fields the code attempts to match the list of field names (there maybe more than one match) with the parameter list for stored procedures in the AppSettings.json file. The Enumerable.SequenceEqual uses a case insensitive comparison but order is important. I did consider sorting the two lists of parameters but wasn’t certain the added complexity was worth it.
I created a database table to store the temperature and humidity values.
CREATE TABLE [dbo].[EnvironmentalSensorReport](
[WeatherSensorReportUID] [UNIQUEIDENTIFIER] NOT NULL,
[ReceivedAtUtC] [DATETIME] NOT NULL,
[DeviceID] [NVARCHAR](32) NOT NULL,
[DeviceEui] [NVARCHAR](32) NOT NULL,
[ApplicationID] [NVARCHAR](32) NOT NULL,
[IsConfirmed] [BIT] NOT NULL,
[IsRetry] [BIT] NOT NULL,
[Port] [SMALLINT] NOT NULL,
[Temperature] [FLOAT] NOT NULL,
[Humidity] [FLOAT] NOT NULL,
CONSTRAINT [PK_EnvironmentalSensorReport] PRIMARY KEY CLUSTERED
(
[WeatherSensorReportUID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[EnvironmentalSensorReport] ADD CONSTRAINT [DF_EnvironmentalSensorReport_EnvironmentalSensorReporttUID] DEFAULT (NEWID()) FOR [WeatherSensorReportUID]
GO
The stored procedure must have the parameters @ReceivedAtUtc, @DeviceID, @DeviceEui, @ApplicationID, @IsRetry, @IsConfirmed and @Port. In this example the payload specific fields generated by the Low Power Protocol(LPP) decoder are @Temperature_0 and @relative_humidity_0
CREATE PROCEDURE [dbo].[EnvironmentalSensorProcess]
@ReceivedAtUtc AS DATETIME,
@DeviceID AS NVARCHAR(32),
@DeviceEui AS NVARCHAR(32),
@ApplicationID AS NVARCHAR(32),
@IsRetry AS BIT,
@IsConfirmed AS BIT,
@Port AS SMALLINT,
@Temperature_0 AS FLOAT,
@relative_humidity_0 AS FLOAT
AS
BEGIN
SET NOCOUNT ON;
INSERT INTO [dbo].[EnvironmentalSensorReport]
([PositionReportUID]
.[ReceivedAtUtc]
,[DeviceID]
,[DeviceEui]
,[ApplicationID]
,[IsConfirmed]
,[IsRetry]
,[Port]
,Temperature
,Humidity)
VALUES
(
@ReceivedAtUtc,
@DeviceID,
@DeviceEui,
@ApplicationID,
@IsConfirmed,
@IsRetry,
@port,
@Temperature_0,
@relative_humidity_0)
END
Environmental sensor data displayed in SQL Server Management Studio(SSMS)
To store more complex nest payload fields (e.g. latitude, longitude and altitude values), I flattened the the hierarchy.
private static void EnumerateChildren(DynamicParameters parameters, JToken token, string prefix ="")
{
if (token is JProperty)
if (token.First is JValue)
{
JProperty property = (JProperty)token;
parameters.Add($"@{prefix}{property.Name}", property.Value.ToString());
}
else
{
JProperty property = (JProperty)token;
prefix += property.Name;
}
foreach (JToken token2 in token.Children())
{
EnumerateChildren(parameters,token2, prefix);
}
}
Unpacked LPP payload from GPS tracker displayed in TTN application data viewFlattened location, acceleration and rotation information
CREATE TABLE [dbo].[PositionReport](
[PositionReportUID] [UNIQUEIDENTIFIER] NOT NULL,
[ReceivedAtUtC] [DATETIME] NOT NULL,
[DeviceID] [NVARCHAR](32) NOT NULL,
[DeviceEui] [NVARCHAR](32) NOT NULL,
[ApplicationID] [NVARCHAR](32) NOT NULL,
[IsConfirmed] [BIT] NOT NULL,
[IsRetry] [BIT] NOT NULL,
[Port] [SMALLINT] NOT NULL,
[Latitude] [FLOAT] NOT NULL,
[Longitude] [FLOAT] NOT NULL,
[Altitude] [FLOAT] NOT NULL,
CONSTRAINT [PK_PositionReport] PRIMARY KEY CLUSTERED
(
[PositionReportUID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
I created a database table to store values of only the fields I cared about.
CREATE PROCEDURE [dbo].[PositionReportProcess]
@ReceivedAtUtc AS DATETIME,
@DeviceID AS NVARCHAR(32),
@DeviceEui AS NVARCHAR(32),
@ApplicationID AS NVARCHAR(32),
@IsRetry AS Bit,
@IsConfirmed AS BIT,
@Port AS SMALLINT,
@accelerometer_3x AS FLOAT,
@accelerometer_3y AS FLOAT,
@accelerometer_3z AS FLOAT,
@analog_in_8 AS FLOAT,
@analog_in_9 AS FLOAT,
@analog_in_10 AS FLOAT,
@analog_in_11 AS FLOAT,
@gps_1Latitude AS FLOAT,
@gps_1Longitude AS FLOAT,
@gps_1Altitude AS FLOAT,
@gyrometer_5x AS FLOAT,
@gyrometer_5y AS FLOAT,
@gyrometer_5z AS FLOAT
AS
BEGIN
SET NOCOUNT ON;
INSERT INTO [dbo].[PositionReport]
([PositionReportUID]
.[ReceivedAtUtc]
,[DeviceID]
,[DeviceEui]
,[ApplicationID]
,[IsConfirmed]
,[IsRetry]
,[Port]
,Latitude
,Longitude
,Altitude)
VALUES
(
@ReceivedAtUtc,
@DeviceID,
@DeviceEui,
@ApplicationID,
@IsConfirmed,
@IsRetry,
@port,
@gps_1Latitude,
@gps_1Longitude,
@gps_1Altitude)
END
The stored procedure for storing the GPS tracker payload has to have parameters matching each payload field but some of the fields are not used.
Location data displayed in SQL Server Management Studio(SSMS)
For uplink messages with no payload fields the message processor looks for a stored procedure with a single parameter called “payload_raw”.(there maybe more than one match)
CREATE TABLE [dbo].[PayloadReport](
[PayloadReportUID] [UNIQUEIDENTIFIER] NOT NULL,
[ReceivedAtUtC] [DATETIME] NOT NULL,
[DeviceID] [NVARCHAR](32) NOT NULL,
[DeviceEui] [NVARCHAR](32) NOT NULL,
[ApplicationID] [NVARCHAR](32) NOT NULL,
[IsConfirmed] [BIT] NOT NULL,
[IsRetry] [BIT] NOT NULL,
[Port] [SMALLINT] NOT NULL,
[Payload] [NVARCHAR](128) NOT NULL,
CONSTRAINT [PK_PayloadReport] PRIMARY KEY CLUSTERED
(
[PayloadReportUID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[PayloadReport] ADD CONSTRAINT [DF_PayloadReport_PositionReportUID] DEFAULT (NEWID()) FOR [PayloadReportUID]
GO
ALTER PROCEDURE [dbo].[PayloadRawProcess]
@ReceivedAtUtc AS DATETIME,
@DeviceID AS NVARCHAR(32),
@DeviceEui AS NVARCHAR(32),
@ApplicationID AS NVARCHAR(32),
@IsRetry AS Bit,
@IsConfirmed AS BIT,
@Port AS SMALLINT,
@Payload AS NVARCHAR(128)
AS
BEGIN
SET NOCOUNT ON;
INSERT INTO [dbo].[PayloadReport]
([PositionReportUID]
.[ReceivedAtUtc]
,[DeviceID]
,[DeviceEui]
,[ApplicationID]
,[IsConfirmed]
,[IsRetry]
,[Port]
,[Payload])
VALUES(@ReceivedAtUtc,
@DeviceID,
@DeviceEui,
@ApplicationID,
@IsConfirmed,
@IsRetry,
@port,
@Payload)
END
Raw payload data displayed in SQL Server Management Studio(SSMS)
Initially the application just used Console.Writeline for logging, then I added Log4Net because it would be useful to persist information about failures and so I could copy n paste parameter lists to the appSettings.json file.