The Things Network HTTP Integration Part1

Infrastructure and payloads

This is the first in a series of posts about building an HTTP Integration for a The Things Network(TTN) application. I have assumed that readers are familiar with the configuration and operation of a TTN instance so I’m not going to cover that in detail.

I’m using a Seeeduino LoRaWAN device as a client so I configured the sample Over the Air Activation(OTAA) application to connect to my local RAK7246 Developer gateway.

#include <LoRaWan.h>

unsigned char data[] = {0x53, 0x65, 0x65, 0x65, 0x64, 0x75, 0x69, 0x6E, 0x6F, 0x20, 0x4C, 0x6F, 0x52, 0x61, 0x57, 0x41, 0x4E};
char buffer[256];

void setup(void)
{
  SerialUSB.begin(9600);
  while (!SerialUSB);

  lora.init();

  memset(buffer, 0, 256);
  lora.getVersion(buffer, 256, 1);
  SerialUSB.print("Ver:");
  SerialUSB.print(buffer);

  memset(buffer, 0, 256);
  lora.getId(buffer, 256, 1);
  SerialUSB.print(buffer);
  SerialUSB.print("ID:");

  lora.setKey(NULL, NULL, "12345678901234567890123456789012");
  lora.setId(NULL, "1234567890123456", "1234567890123456");

  lora.setPort(10);

  lora.setDeciveMode(LWOTAA);
  lora.setDataRate(DR0, AS923);

  lora.setDutyCycle(false);
  lora.setJoinDutyCycle(false);

  lora.setPower(14);


  while (!lora.setOTAAJoin(JOIN, 10))
  {
    SerialUSB.println("");
  }
    SerialUSB.println( "Joined");
}

void loop(void)
{
  bool result = false;

  //result = lora.transferPacket("Hello World!", 10);
  result = lora.transferPacket(data, sizeof(data));

  if (result)
  {
    short length;
    short rssi;

    memset(buffer, 0, 256);
    length = lora.receivePacket(buffer, 256, &rssi);

    if (length)
    {
      SerialUSB.print("Length is: ");
      SerialUSB.println(length);
      SerialUSB.print("RSSI is: ");
      SerialUSB.println(rssi);
      SerialUSB.print("Data is: ");
      for (unsigned char i = 0; i < length; i ++)
      {
        SerialUSB.print("0x");
        SerialUSB.print(buffer[i], HEX);
        SerialUSB.print(" ");
      }
      SerialUSB.println();
    }
  }
  delay( 10000);
}

The SetKey and SetId parameters are not obvious and it would be much easier if there were two methods one for OTTA and the other for Activation by-Personalization(ABP).
I then built an Net Core 3.1 Web API application which had a single controller to receive messages from TTN.

[Route("[controller]")]
[ApiController]
public class Raw : ControllerBase
{
   private static readonly ILog log = log4net.LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);

   [HttpGet]
   public string Index()
   {
      return "move along nothing to see";
   }

   [HttpPost]
   public void PostRaw([FromBody]JsonElement body)
   {
      string json = JsonSerializer.Serialize(body);

      log.Info(json);
   }
}

I then configured my TTN application integration to send messages to my shinny new endpoint

TTN Application configuration overview

My controller logged events to Azure application Insights so I could see if there were any errors and inspect message payloads. The TTN developers provide sample payloads to illustrate the message format but they were a bit chunky for my initial testing.

Application Insights event list

I could then inspect individual events and payloads

Application Insights event display

At this point I could download message payloads and save them locally.

{
   "app_id": "rak811wisnodetest",
   "dev_id": "rak811wisnode1",
   "hardware_serial": "1234567890123456",
   "port": 1,
   "counter": 2,
   "confirmed": true,
   "payload_raw": "VGlueUNMUiBMb1JhV0FO",
   "metadata": {
      "time": "2020-08-26T00:50:36.182774822Z",
      "frequency": 924.2,
      "modulation": "LORA",
      "data_rate": "SF7BW125",
      "coding_rate": "4/5",
      "gateways": [
         {
            "gtw_id": "eui-b827ebfffe6c279d",
            "timestamp": 1584148244,
            "time": "2020-08-26T00:50:35.012774Z",
            "channel": 5,
            "rssi": -63,
            "snr": 9.2,
            "rf_chain": 0,
            "latitude": -43.49889,
            "longitude": 172.60104,
            "altitude": 16
         }
      ]
   },
   "downlink_url": "https://integrations.thethingsnetwork.org/ttn-eu/api/v2/down/rak811wisnodetest/azure-webapi-endpoint?key=ttn-account-v2.12345678901234567_12345_1234567-dduo"

}

These were useful because I could then use a tool like Telerik Fiddler to submit messages to my application when it was running locally in the Visual Studio 2019 debugger.

The Things Network Client Part2

MQTT connectivity

In a previous post I couldn’t add a TTN V3EndDevice to an application (I’m going try again soon) using the REST API so I figured would try out the MQTT API. My aim was to get notifications of when a Device was created/updated/deleted in an Application.

After some tinkering with the format of MQTT usernames and passwords I can connect to my V3 instance and successfully subscribe to topics. But, currently(Aug 2020) I’m not receiving any messages when I create, update or delete a Device. I have tried different Quality of Service QoS settings etc. and I wonder if my topic names aren’t quite right.

.Net Core MQTT Client

I wanted notifications so I could “automagically” provision a device in an Azure IoT Hub (maybe with a tag indicating it’s an “orphan” so it is discoverable) or in Azure IoT Central when a Device was created in TTN.

This looked like a good approach as my Azure IoT Hub applications have other devices which are not connected via LoRaWAN, and there are many specialised LoRaWAN settings which would need to be validated, stored etc. by my software. (maybe TTN device templates would make this easier). The TTN software is pretty good at managing devices so why would I “re-invent the wheel”.

I built a “nasty” console application using MQTTNet so that I could figure out how to connect to my V3 setup and subscribe to topics.

namespace devMobile.TheThingsNetwork.MqttClient
{
   using System;
   using System.Diagnostics;
   using System.Threading;
   using System.Threading.Tasks;

   using MQTTnet;
   using MQTTnet.Client;
   using MQTTnet.Client.Disconnecting;
   using MQTTnet.Client.Options;
   using MQTTnet.Client.Receiving;
   using MQTTnet.Client.Subscribing;

   class Program
   {
      private static IMqttClient mqttClient = null;
      private static IMqttClientOptions mqttOptions = null;
      private static string server;
      private static string username;
      private static string password;
      private static string clientId;

      static async Task Main(string[] args)
      {
         MqttFactory factory = new MqttFactory();
         mqttClient = factory.CreateMqttClient();

         if (args.Length != 4)
         {
            Console.WriteLine("[MQTT Server] [UserName] [Password] [ClientID]");
            Console.WriteLine("Press <enter> to exit");
            Console.ReadLine();
            return;
         }

         server = args[0];
         username = args[1];
         password = args[2];
         clientId = args[3];

         mqttOptions = new MqttClientOptionsBuilder()
            .WithTcpServer(server)
            .WithCredentials(username, password)
            .WithClientId(clientId)
            .WithTls()
            .Build();

         mqttClient.UseDisconnectedHandler(new MqttClientDisconnectedHandlerDelegate(e => MqttClient_Disconnected(e)));
         mqttClient.UseApplicationMessageReceivedHandler(new MqttApplicationMessageReceivedHandlerDelegate(e => MqttClient_ApplicationMessageReceived(e)));
         await mqttClient.ConnectAsync(mqttOptions);

         // Different topics I have tried
         string topic;
         topic = $"v3/{username}/devices/{clientId}/events/update";
         //topic = $"v3/{username}/devices/{clientId}/events/create";
         //topic = $"v3/{username}/devices/{clientId}/events/delete";
         //topic = $"v3/{username}/devices/+/events/+";
         //topic = $"v3/{username}/devices/+/events/create";
         //topic = $"v3/{username}/devices/+/events/update";
         //topic = $"v3/{username}/devices/+/events/delete";
         //topic = $"v3/{username}/devices/+/events/+";

         MqttClientSubscribeResult result;

         // Different QoS I have tried
         //result = await mqttClient.SubscribeAsync(topic, MQTTnet.Protocol.MqttQualityOfServiceLevel.AtMostOnce);
         result = await mqttClient.SubscribeAsync(topic, MQTTnet.Protocol.MqttQualityOfServiceLevel.AtLeastOnce);
         //result = await mqttClient.SubscribeAsync(topic, MQTTnet.Protocol.MqttQualityOfServiceLevel.ExactlyOnce);

         Console.WriteLine("SubscribeAsync Result");
         foreach ( var resultItem in result.Items)
         {
            Console.WriteLine($"ResultCode:{resultItem.ResultCode} TopicFilter:{resultItem.TopicFilter}");
         }                     

         Console.WriteLine("Press any key to temrminate wait");
         while (!Console.KeyAvailable)
         {
            Console.Write(".");

            Thread.Sleep(30100);
         }

         Console.WriteLine("Press <enter> to exit");
         Console.ReadLine();
         return;
      }

      private static void MqttClient_ApplicationMessageReceived(MqttApplicationMessageReceivedEventArgs e)
      {
         Console.WriteLine($"ClientId:{e.ClientId} Topic:{e.ApplicationMessage.Topic} Payload:{e.ApplicationMessage.ConvertPayloadToString()}");
      }

      private static async void MqttClient_Disconnected(MqttClientDisconnectedEventArgs e)
      {
         Debug.WriteLine("Disconnected");
         await Task.Delay(TimeSpan.FromSeconds(5));

         try
         {
            await mqttClient.ConnectAsync(mqttOptions);
         }
         catch (Exception ex)
         {
            Debug.WriteLine("Reconnect failed {0}", ex.Message);
         }
      }
   }
}

I’m going to post some questions on the TTN forums and Slack community to see if what I’m trying to do is supported/possible.

I got some helpful responses on the TTN forums and it looks like what I want todo is not supported by the V3 stack (Aug2020) and I will have to use gRPC.

The Things Network Client Part1

Basic connectivity

Over the last few months I have been using the community version of The Things Network(TTN) to test my LoRaWAN RakWireless RAK811 EVB based nanoFramework and TinyCLR clients.

As I was manually configuring TTN clients references to an application programming interface(API) caught my attention. In my day job I use tools from SmartBear and RicoSuter to generate .Net Core clients (for APSP.NET Core Web APIs I have build) from their OpenAPI descriptions.

The first step was to download the API swagger from The Things Network Github repository.

Things Network Github repository

I then used nSwagStudio to generate a C# client from a local copy of the API swagger (in the future I will use download the swagger and use the command line tools).

nSwag User Interface

At this point I had a basic client for the TTN network stack API which lacked support for the TTN security model etc. After looking at the TTN API documentation I figured out I need to add a header which contained an API Key from the TTN application configuration.

namespace TheThingsNetwork.API
{
	public partial class EndDeviceRegistryClient
	{
		public string ApiKey { set; get; }

		partial void PrepareRequest(System.Net.Http.HttpClient client, System.Net.Http.HttpRequestMessage request, string url)
		{
			if (!client.DefaultRequestHeaders.Contains("Authorization"))
			{
				client.DefaultRequestHeaders.Add("Authorization", $"Bearer {ApiKey}");
			}
		}
	}
}

In the TTN console on the overview page for my application I created an Access Key.

I then added some attributes to one of my devices so I had some addition device configuration data to display(I figured these could be useful for Azure IoT Hub configuration parameters etc. more about this later..)

Basic Device configuration in TTN Enterprise

I built a nasty console application which displayed some basic device configuration information to confirm I could authenticate and enumerate.

//---------------------------------------------------------------------------------
// Copyright (c) August 2020, devMobile Software
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SECURITY_ANONYMISE
//---------------------------------------------------------------------------------
namespace TheThingsNetwork.EndDeviceClient
{
	using System;
	using System.Collections.Generic;
	using System.Net.Http;
	using TheThingsNetwork.API;

	class Program
	{
		static void Main(string[] args)
		{
			Console.WriteLine("TheThingsNetwork.EndDeviceClient starting");

			if (args.Length != 3)
			{
				Console.WriteLine("EndDeviceClient <baseURL> <applicationId> <apiKey>");
				Console.WriteLine("Press <enter> to exit");
				Console.ReadLine();
				return;
			}
			string baseUrl = args[0];
#if !SECURITY_ANONYMISE
			Console.WriteLine($"baseURL: {baseUrl}");
#endif
			string applicationId = args[1];
#if !SECURITY_ANONYMISE
			Console.WriteLine($"applicationId: {applicationId}");
#endif
			string apiKey = args[2];
#if !SECURITY_ANONYMISE
			Console.WriteLine($"apiKey: {apiKey}");
			Console.WriteLine();
#endif

			using (HttpClient httpClient = new HttpClient())
			{
				EndDeviceRegistryClient endDeviceRegistryClient = new EndDeviceRegistryClient(baseUrl, httpClient);
				endDeviceRegistryClient.ApiKey = apiKey;

				try
				{
					V3EndDevices endDevices = endDeviceRegistryClient.ListAsync(applicationId).GetAwaiter().GetResult();

					foreach (V3EndDevice v3EndDevice in endDevices.End_devices)
					{
#if SECURITY_ANONYMISE
						v3EndDevice.Ids.Dev_eui[7] = 0x0;
						v3EndDevice.Ids.Dev_eui[8] = 0x0;
						v3EndDevice.Ids.Dev_eui[9] = 0x0;
						v3EndDevice.Ids.Dev_eui[10] = 0x0;
						v3EndDevice.Ids.Dev_eui[11] = 0x0;
#endif
						Console.WriteLine($"Device ID:{v3EndDevice.Ids.Device_id} DevEUI:{Convert.ToBase64String(v3EndDevice.Ids.Dev_eui)}");
						Console.WriteLine($"   CreatedAt: {v3EndDevice.Created_at:dd-MM-yy HH:mm:ss} UpdatedAt: {v3EndDevice.Updated_at:dd-MM-yy HH:mm:ss}");

						string[] fieldMaskPaths = { "name", "description", "attributes" };

						var endDevice = endDeviceRegistryClient.GetAsync(applicationId, v3EndDevice.Ids.Device_id, field_mask_paths: fieldMaskPaths).GetAwaiter().GetResult();

						Console.WriteLine($"   Name: {endDevice.Name}");
						Console.WriteLine($"   Description: {endDevice.Description}");
						if (endDevice.Attributes != null)
						{
							foreach (KeyValuePair<string, string> attribute in endDevice.Attributes)
							{
								Console.WriteLine($"      Key: {attribute.Key} Name: {attribute.Value}");
							}
						}
						Console.WriteLine();
					}
				}
				catch (Exception ex)
				{
					Console.WriteLine(ex.Message);
				}

				Console.WriteLine("Press <enter> to exit");
				Console.ReadLine();
			}
		}
	}
}

I added some code so I could anonymise the displayed configuration so I could take screen grabs without revealing any sensitive information.

TTN API Client V1

Initially I struggled with versioning issues as the TTN community network is running V2 and the github repository was for V3. I approached TTN and they gave me access to a “limited” account on the enterprise network.

I also struggled with the number of blank fields in responses and spent some time learning GO (the programming language TTN is built with) to figure out how to use fieldMaskPaths etc.

string[] fieldMaskPaths = { "name", "description", "attributes" };

V3EndDevice endDevice = endDeviceRegistryClient.GetAsync(applicationId, v3EndDevice.Ids.Device_id, field_mask_paths: fieldMaskPaths).GetAwaiter().GetResult();

Overall things went pretty well but I expect to basic GO programing skills one this project is finished.

As hinted at earlier in this post the end goal of this project is to build an Azure IoT hub integration.

Wilderness Labs nRF24L01 Wireless field gateway Meadow client

After a longish pause in development work on my nrf24L01 AdaFruit.IO and Azure IOT Hub field gateways I figured a client based on my port of the techfooninja nRF24 library to Wilderness Labs Meadow would be a good test.

This sample client is an Wilderness Labs Meadow with a Sensiron SHT31 Temperature & humidity sensor (supported by meadow foundation), and a generic nRF24L01 device connected with jumper cables.

Bill of materials (prices as at March 2020)

  • Wilderness Labs Meadow 7F Micro device USD50
  • Seeedstudio Temperature and Humidity Sensor(SHT31) USD11.90
  • Seeedstudio 4 pin Male Jumper to Grove 4 pin Conversion Cable USD2.90
  • 2.4G Wireless Module nRF24L01+PA USD9.90

The initial version of the code was pretty basic with limited error handling and no power conservation support.

namespace devMobile.IoT.FieldGateway.Client
{
   using System;
   using System.Text;
   using System.Threading;

   using Radios.RF24;

   using Meadow;
   using Meadow.Devices;
   using Meadow.Foundation.Leds;
   using Meadow.Foundation.Sensors.Atmospheric;
   using Meadow.Hardware;
   using Meadow.Peripherals.Leds;

   public class MeadowClient : App<F7Micro, MeadowClient>
   {
      private const string BaseStationAddress = "Base1";
      private const string DeviceAddress = "WLAB1";
      private const byte nRF24Channel = 15;
      private RF24 Radio = new RF24();
      private readonly TimeSpan periodTime = new TimeSpan(0, 0, 60);
      private readonly Sht31D sensor;
      private readonly ILed Led;

      public MeadowClient()
      {
         Led = new Led(Device, Device.Pins.OnboardLedGreen);

         try
         {
            sensor = new Sht31D(Device.CreateI2cBus());

            var config = new Meadow.Hardware.SpiClockConfiguration(
                           2000,
                           SpiClockConfiguration.Mode.Mode0);

            ISpiBus spiBus = Device.CreateSpiBus(
               Device.Pins.SCK,
               Device.Pins.MOSI,
               Device.Pins.MISO, config);

            Radio.OnDataReceived += Radio_OnDataReceived;
            Radio.OnTransmitFailed += Radio_OnTransmitFailed;
            Radio.OnTransmitSuccess += Radio_OnTransmitSuccess;

            Radio.Initialize(Device, spiBus, Device.Pins.D09, Device.Pins.D10, Device.Pins.D11);
            //Radio.Address = Encoding.UTF8.GetBytes(Environment.MachineName);
            Radio.Address = Encoding.UTF8.GetBytes(DeviceAddress);

            Radio.Channel = nRF24Channel;
            Radio.PowerLevel = PowerLevel.Low;
            Radio.DataRate = DataRate.DR250Kbps;
            Radio.IsEnabled = true;

            Radio.IsAutoAcknowledge = true;
            Radio.IsDyanmicAcknowledge = false;
            Radio.IsDynamicPayload = true;

            Console.WriteLine($"Address: {Encoding.UTF8.GetString(Radio.Address)}");
            Console.WriteLine($"PowerLevel: {Radio.PowerLevel}");
            Console.WriteLine($"IsAutoAcknowledge: {Radio.IsAutoAcknowledge}");
            Console.WriteLine($"Channel: {Radio.Channel}");
            Console.WriteLine($"DataRate: {Radio.DataRate}");
            Console.WriteLine($"IsDynamicAcknowledge: {Radio.IsDyanmicAcknowledge}");
            Console.WriteLine($"IsDynamicPayload: {Radio.IsDynamicPayload}");
            Console.WriteLine($"IsEnabled: {Radio.IsEnabled}");
            Console.WriteLine($"Frequency: {Radio.Frequency}");
            Console.WriteLine($"IsInitialized: {Radio.IsInitialized}");
            Console.WriteLine($"IsPowered: {Radio.IsPowered}");
         }
         catch (Exception ex)
         {
            Console.WriteLine(ex.Message);
         }

         while (true)
         {
            sensor.Update();

            Console.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-TX T:{sensor.Temperature:0.0}C H:{sensor.Humidity:0}%");

            Led.IsOn = true;

            string values = "T " + sensor.Temperature.ToString("F1") + ",H " + sensor.Humidity.ToString("F0");

            // Stuff the 2 byte header ( payload type & deviceIdentifierLength ) + deviceIdentifier into payload
            byte[] payload = new byte[1 + Radio.Address.Length + values.Length];
            payload[0] = (byte)((1 << 4) | Radio.Address.Length);
            Array.Copy(Radio.Address, 0, payload, 1, Radio.Address.Length);
            Encoding.UTF8.GetBytes(values, 0, values.Length, payload, Radio.Address.Length + 1);

            Radio.SendTo(Encoding.UTF8.GetBytes(BaseStationAddress), payload);

            Thread.Sleep(periodTime);
         }
      }

      private void Radio_OnDataReceived(byte[] data)
      {
         // Display as Unicode
         string unicodeText = Encoding.UTF8.GetString(data);
         Console.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-RX Unicode Length {0} Unicode Length {1} Unicode text {2}", data.Length, unicodeText.Length, unicodeText);

         // display as hex
         Console.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-RX Hex Length {data.Length} Payload {BitConverter.ToString(data)}");
      }

      private void Radio_OnTransmitSuccess()
      {
         Led.IsOn = false;

         Console.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-TX Succeeded!");
      }

      private void Radio_OnTransmitFailed()
      {
         Console.WriteLine($"{DateTime.UtcNow:HH:mm:ss}-TX failed!");
      }
   }
}

After sorting out power to the SHT31 (I had to push the jumper cable further into the back of the jumper cable plug). I could see temperature and humidity values getting uploaded to Adafruit.IO.

Visual Studio 2019 debug output

Adafruit.IO “automagically” provisions new feeds which is helpful when building a proof of concept (PoC)

Adafruit.IO feed with default feed IDs

I then modified the feed configuration to give it a user friendly name.

Feed Configuration

All up configuration took about 10 minutes.

Meadow device temperature and humidity

Azure IoT Hub, Event Grid to Application Insights

For a second Proof of Concept (PoC) I wanted to upload sensor data from my MQTT LoRa Telemetry Field Gateway to an Azure IoT Hub, then using Azure EventGrid subscribe to the stream of telemetry data events, logging the payloads in Azure Application Insights (the aim was minimal code so no database etc.).

The first step was to create and deploy a simple Azure Function for unpacking the telemetry event payload.

Azure IoT Hub Azure Function Handler

Then wire the Azure function to the Microsoft.Devices.Device.Telemetry Event Type

Azure IoT Hub Event Metrics

On the Windows 10 IoT Core device in the Event Tracing Window(ETW) logging on the device I could see LoRa messages arriving and being unpacked.

Windows 10 Device ETW showing message payload

Then in Application Insights after some mucking around with code I could see in a series of Trace statements the event payload as it was unpacked.

{"id":"29108ebf-e5d5-7b95-e739-7d9048209d53","topic":"/SUBSCRIPTIONS/12345678-9012-3456-7890-123456789012/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"subject":"devices/MQTTNetClient",
"eventType":"Microsoft.Devices.DeviceTelemetry",
"eventTime":"2020-02-01T04:30:51.427Z",
"data":
{
 "properties":{},
"systemProperties":{"iothub-connection-device-id":"MQTTNetClient","iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149890997219611",
"iothub-enqueuedtime":"2020-02-01T04:30:51.427Z",
"iothub-message-source":"Telemetry"
},
"body":"eyJPZmZpY2VUZW1wZXJhdHVyZSI6IjIyLjUiLCJPZmZpY2VIdW1pZGl0eSI6IjkyIn0="
},
"dataVersion":"",
"metadataVersion":"1"
}
Application Insights logging with message unpacking
Application Insights logging message payload

Then in the last log entry the decoded message payload

/*
    Copyright ® 2020 Feb devMobile Software, All Rights Reserved
 
    MIT License

    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all
    copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    SOFTWARE

    Default URL for triggering event grid function in the local environment.
    http://localhost:7071/runtime/webhooks/EventGrid?functionName=functionname
 */
namespace EventGridProcessorAzureIotHub
{
   using System;
   using System.IO;
   using System.Reflection;

   using Microsoft.Azure.WebJobs;
   using Microsoft.Azure.EventGrid.Models;
   using Microsoft.Azure.WebJobs.Extensions.EventGrid;

   using log4net;
   using log4net.Config;
   using Newtonsoft.Json;

   public static class Telemetry
    {
        [FunctionName("Telemetry")]
        public static void Run([EventGridTrigger]Microsoft.Azure.EventGrid.Models.EventGridEvent eventGridEvent, ExecutionContext executionContext )//, TelemetryClient telemetryClient)
        {
			ILog log = log4net.LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);

		   var logRepository = LogManager.GetRepository(Assembly.GetEntryAssembly());
			XmlConfigurator.Configure(logRepository, new FileInfo(Path.Combine(executionContext.FunctionAppDirectory, "log4net.config")));

         log.Info($"eventGridEvent.Data-{eventGridEvent}");

         log.Info($"eventGridEvent.Data.ToString()-{eventGridEvent.Data.ToString()}");

        IotHubDeviceTelemetryEventData iOThubDeviceTelemetryEventData = (IotHubDeviceTelemetryEventData)JsonConvert.DeserializeObject(eventGridEvent.Data.ToString(), typeof(IotHubDeviceTelemetryEventData));

         log.Info($"iOThubDeviceTelemetryEventData.Body.ToString()-{iOThubDeviceTelemetryEventData.Body.ToString()}");

         byte[] base64EncodedBytes = System.Convert.FromBase64String(iOThubDeviceTelemetryEventData.Body.ToString());

         log.Info($"System.Text.Encoding.UTF8.GetString(-{System.Text.Encoding.UTF8.GetString(base64EncodedBytes)}");
      }
	}
}

Overall it took roughly half a page of code (mainly generated by a tool) to unpack and log the contents of an Azure IoT Hub EventGrid payload to Application Insights.

Azure IoT Hub MQTT+TLS Overheads

An Azure IoT Hub has a series of metrics and one I had been using was “Total Device Data Usage”. To better understand what it was displaying I modified my Azure IoT Hub MQTT Test Application to display the size of the JOSN payload.

MQTTNet based client displaying payload length

The size of the packets sent and the total device data appeared to map pretty well but I was also interested in the Transport Layer Security (TLS) and Messaging Queuing Telemetry Transport (MQTT) overheads.

Azure IoT Hub Metrics

To get an idea of the overheads I fired up LiveTcpUdpWatch by Nirsoft and noted down the traffic measure on port 8883.

Conenction LiveTcpUdpWatch main screen

Launching the MQTTNet client sending every 30 seconds resulted in traffic like this

4179b - Establishing connection
4284b - 105b
4317b - 33b
4386b - 69b
4455b - 69b
4524b - 69b
4593b - 69b
4662b - 69b
4731b - 69b
4800b - 69b
4869b - 69b
4938b - 69b
5007b - 69b
5076b - 69b
5145b - 69b
5214b - 69b
5288b - 69b

So it looks like my very rough numbers are close to the numbers discussed in the above article. I need to explore the impact of keep-alive messages and other background operations.

Azure IOT Hub and Event Grid Part2

I did notice that the .DeviceConnected and .DeviceDisconnected events did take a while to arrive. When I started the field gateway application on the Windows 10 IoT Core device I would get several DeviceTelemetry events before the DeviceConnected event arrived.

I was using Advanced Message Queueing Protocol (AMQP) so I modified the configuration file so I could try all the available options.

C# TransportType enumeration

namespace Microsoft.Azure.Devices.Client
{
	//
	// Summary:
	//     Transport types supported by DeviceClient - AMQP/TCP, HTTP 1.1, MQTT/TCP, AMQP/WS,
	//     MQTT/WS
	public enum TransportType
	{
		//
		// Summary:
		//     Advanced Message Queuing Protocol transport. Try Amqp over TCP first and fallback
		//     to Amqp over WebSocket if that fails
		Amqp = 0,
		//
		// Summary:
		//     HyperText Transfer Protocol version 1 transport.
		Http1 = 1,
		//
		// Summary:
		//     Advanced Message Queuing Protocol transport over WebSocket only.
		Amqp_WebSocket_Only = 2,
		//
		// Summary:
		//     Advanced Message Queuing Protocol transport over native TCP only
		Amqp_Tcp_Only = 3,
		//
		// Summary:
		//     Message Queuing Telemetry Transport. Try Mqtt over TCP first and fallback to
		//     Mqtt over WebSocket if that fails
		Mqtt = 4,
		//
		// Summary:
		//     Message Queuing Telemetry Transport over Websocket only.
		Mqtt_WebSocket_Only = 5,
		//
		// Summary:
		//     Message Queuing Telemetry Transport over native TCP only
		Mqtt_Tcp_Only = 6
	}
}

Windows 10 IoT Core LoRa Telemetry Field gateway config.json file

{
   "AzureIoTHubDeviceConnectionString": "HostName=FieldGatewayHub.azure-devices.net;DeviceId=LoRa915MHz;SharedAccessKey=y12345678901234567890123456789012345678/arg=",

   "AzureIoTHubTransportType-Amqp": "amqp",
   "AzureIoTHubTransportType-Http1": "Http1",
   "AzureIoTHubTransportType-Amqp_WebSocket_Only": "Amqp_WebSocket_Only",
   "AzureIoTHubTransportType-Amqp_Tcp_Only": "Amqp_Tcp_Only",
   "AzureIoTHubTransportType-Mqtt": "Mqtt",
   "AzureIoTHubTransportType-Mqtt_WebSocket_Only": "Mqtt_WebSocket_Only",
   "AzureIoTHubTransportType-Amqp": "Mqtt_Tcp_Only",

   "AzureIoTHubTransportType": "Mqtt_Tcp_Only",
   "SensorIDIsDeviceIDSensorID": false,
   "Address": "LoRaIoT1",
   "Frequency": 915000000.0,
   "PABoost": true
}

So in alphabetical order here are my not terribly scientific results

AMQP

Device ETW

Device Telemetry messages

{
"id":"07e9a772-d86a-963d-139a-9d2ea2a0866c",
"topic":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"subject":"devices/LoRa915MHz",
"eventType":"Microsoft.Devices.DeviceTelemetry","eventTime":"2020-01-25T00:57:18.477Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz","iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T00:57:18.477Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiIxMC4wIiwiUGFja2V0UlNTSSI6LTcxLCJSU1NJIjotMTEwLCJEZXZpY2VBZGRyZXNzQkNEIjoiNEQtNjEtNjQtNzUtNjktNkUtNkYtMzIiLCJhdCI6Ijg0LjAiLCJhaCI6IjUwIiwid3NhIjoiMSIsIndzZyI6IjMiLCJ3ZCI6IjE5My44OCIsInIiOiIwLjAwIn0="},
"dataVersion":"",
"metadataVersion":"1"
}
…
{
"id":"ca8e8531-10da-ec99-aad7-49e68f3f9500","topic":"/SUBSCRIPTIONS/712345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"subject":"devices/LoRa915MHz",
"eventType":"Microsoft.Devices.DeviceTelemetry",
"eventTime":"2020-01-25T01:02:23.377Z",
"data":{
"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz",
"iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T01:02:23.377Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiI5LjgiLCJQYWNrZXRSU1NJIjotNzAsIlJTU0kiOi0xMDgsIkRldmljZUFkZHJlc3NCQ0QiOiI0RC02MS02NC03NS02OS02RS02Ri0zMiIsImF0IjoiODUuMSIsImFoIjoiNTEiLCJ3c2EiOiIxIiwid3NnIjoiMyIsIndkIjoiMjM5LjI1IiwiciI6IjAuMDAifQ=="},
"dataVersion":"",
"metadataVersion":"1"
}

Device connectivity messages

{
"id":"d8a393ff-6549-69d2-d728-37eee2437693",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceConnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T01:01:28.4887191Z","data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA90000000700000000000000000000001E"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

{
"id":"b345d18a-bdf5-3397-35c1-fd5c35046d85",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceDisconnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T01:02:24.9605306Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA90000000700000000000000000000001F"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

The first telemetry data arrived 00:57:18, the DeviceConnected arrived 01:01:28 so approximately a 4 minute delay, the DeviceDisconnected arrived within a minute of me shutting the device down.

Amqp-Tcp-Only

Device Telemetry messages

{
"id":"b8cdbc73-5cb8-134c-a328-beed47be5f27",
"topic":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB","subject":"devices/LoRa915MHz",
"eventType":"Microsoft.Devices.DeviceTelemetry",
"eventTime":"2020-01-25T04:16:48.732Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz",
"iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T04:16:48.732Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiI5LjUiLCJQYWNrZXRSU1NJIjotNzIsIlJTU0kiOi0xMDcsIkRldmljZUFkZHJlc3NCQ0QiOiI0RC02MS02NC03NS02OS02RS02Ri0zMiIsImF0IjoiODYuNSIsImFoIjoiNDUiLCJ3c2EiOiIxIiwid3NnIjoiMiIsIndkIjoiOTkuNzUiLCJyIjoiMC4wMCJ9"},
"dataVersion":"",
"metadataVersion":"1"
}
...
{
"id":"56aaf46d-e1ee-9419-2621-aa97c0564778",
"topic":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"subject":"devices/LoRa915MHz",
"eventType":"Microsoft.Devices.DeviceTelemetry",
"eventTime":"2020-01-25T04:21:53.402Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz",
"iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T04:21:53.402Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiI5LjUiLCJQYWNrZXRSU1NJIjotNzEsIlJTU0kiOi0xMDksIkRldmljZUFkZHJlc3NCQ0QiOiI0RC02MS02NC03NS02OS02RS02Ri0zMiIsImF0IjoiODQuOSIsImFoIjoiNDYiLCJ3c2EiOiIzIiwid3NnIjoiNyIsIndkIjoiMjE3LjUwIiwiciI6IjAuMDAifQ=="},
"dataVersion":"",
"metadataVersion":"1"
}

Device connectivity messages

{
"id":"a157468c-7d65-00b1-73d6-12e43fd1356b",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceConnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:20:39.7309538Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA900000007000000000000000000000026"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

{
"id":"2e6d7e57-3db3-9e1d-c01b-b0f787b16e05",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceDisconnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:22:33.5276985Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA900000007000000000000000000000027"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

The first telemetry data arrived 04:16:48, the DeviceConnected arrived 04:20:39 so approximately a 4 minute delay, the DeviceDisconnected arrived within a minute of me shutting the device down.

Amqp WebSocket Only

Device Telemetry messages

{
"id":"f82943da-425c-f49c-49b0-13ff2609544b",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceTelemetry",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:05:36.723Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz",
"iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T04:05:36.723Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiI5LjMiLCJQYWNrZXRSU1NJIjotNzEsIlJTU0kiOi0xMDksIkRldmljZUFkZHJlc3NCQ0QiOiI0RC02MS02NC03NS02OS02RS02Ri0zMiIsImF0IjoiODUuMyIsImFoIjoiNDMiLCJ3c2EiOiIyIiwid3NnIjoiMyIsIndkIjoiMjcyLjYzIiwiciI6IjAuMDAifQ=="}
}
...
{
"id":"8419d4f7-3340-8e29-6370-29f95d40e68c",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceTelemetry",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:11:42.684Z",
"data":{"properties":{},"systemProperties":{"iothub-connection-device-id":"LoRa915MHz",
"iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T04:11:42.684Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiI5LjgiLCJQYWNrZXRSU1NJIjotNzEsIlJTU0kiOi0xMTIsIkRldmljZUFkZHJlc3NCQ0QiOiI0RC02MS02NC03NS02OS02RS02Ri0zMiIsImF0IjoiODcuMyIsImFoIjoiNDMiLCJ3c2EiOiIxIiwid3NnIjoiMyIsIndkIjoiMjcuMDAiLCJyIjoiMC4wMCJ9"}
}

Device connectivity messages

{
"id":"7f10a3e3-0c2c-2b18-e38c-d5ea498304ab",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceConnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:09:52.5786541Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA900000007000000000000000000000024"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

{"id":"474a695b-8c4f-e3fe-0b1b-b6bc6b6d4dbe",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceDisconnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:11:53.076926Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA900000007000000000000000000000025"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

The first telemetry data arrived 04:05:36, DeviceConnected arrived 04:09:52 so approximately a 4 minute delay, the DeviceDisconnected arrived within a minute of me shutting the device down.

HTTP

I waited for 20 minutes and there wasn’t a DeviceConnected message which I sort of expected as HTTP is a connectionless protocol.

MQTT

Device ETW

Device Telemetry messages

{
"id":"bc26c412-c694-3954-5888-baa118cc9f88",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceTelemetry",
"dataschema":"#",
"subject":"devices/LoRa915MHz","time":"2020-01-25T01:11:33.493Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz",
"iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T01:11:33.493Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiI5LjUiLCJQYWNrZXRSU1NJIjotNzEsIlJTU0kiOi0xMTEsIkRldmljZUFkZHJlc3NCQ0QiOiI0RC02MS02NC03NS02OS02RS02Ri0zMiIsImF0IjoiODUuNiIsImFoIjoiNTAiLCJ3c2EiOiIyIiwid3NnIjoiNCIsIndkIjoiMjg1LjAwIiwiciI6IjAuMDAifQ=="}
}
...
{
"id":"de95b90f-ac96-5c76-7a46-00f5a0eef8cf",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceTelemetry",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T01:12:12.101Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz","iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T01:12:12.101Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiIxMC4wIiwiUGFja2V0UlNTSSI6LTU4LCJSU1NJIjotMTA5LCJEZXZpY2VBZGRyZXNzQkNEIjoiMDEtMjMtMjktMDctMjMtMEMtODgtNjMtRUUiLCJoIjoiMzQiLCJ0IjoiNDEuOCIsInMiOiI0IiwidiI6IjQuMDcifQ=="}
}

Device connectivity messages

{
"id":"f8f5ee54-394d-05e3-784d-87bc648e8267",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceConnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T01:11:25.2530139Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA900000007000000000000000000000020"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

{
"id":"82d6aa6c-4c71-9623-a4ac-9e562345afad",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceDisconnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T01:12:26.6368519Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA900000007000000000000000000000021"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

The first telemetry data arrived 01:11:33, the DeviceConnected arrived 01:11:25 so they arrived in order and within 10 seconds, the DeviceDisconnected arrived within a 15 seconds of me shutting the device down.

Mqtt-TCP-Only

Device ETW

Device Telemetry messages

{
"id":"bb86bfd9-6d12-4a27-2444-bd6953be7ffd",
"topic":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"subject":"devices/LoRa915MHz",
"eventType":"Microsoft.Devices.DeviceTelemetry",
"eventTime":"2020-01-25T04:42:15.345Z",
"data":{"properties":{},"systemProperties":{"iothub-connection-device-id":"LoRa915MHz","iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}","iothub-connection-auth-generation-id":"637149227434620853","iothub-enqueuedtime":"2020-01-25T04:42:15.345Z","iothub-message-source":"Telemetry"},"body":"eyJQYWNrZXRTTlIiOiIxMC44IiwiUGFja2V0UlNTSSI6LTcxLCJSU1NJIjotMTA4LCJEZXZpY2VBZGRyZXNzQkNEIjoiNEQtNjEtNjQtNzUtNjktNkUtNkYtMzIiLCJhdCI6Ijg2LjkiLCJhaCI6IjQ1Iiwid3NhIjoiMSIsIndzZyI6IjMiLCJ3ZCI6IjI5LjYzIiwiciI6IjAuMDAifQ=="},"dataVersion":"","metadataVersion":"1"
}
...
{
"id":"c5991ed8-42f2-437a-9161-a526248c955f",
"topic":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB","subject":"devices/LoRa915MHz",
"eventType":"Microsoft.Devices.DeviceTelemetry",
"eventTime":"2020-01-25T04:44:16.986Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz","iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T04:44:16.986Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiIxMC4wIiwiUGFja2V0UlNTSSI6LTcxLCJSU1NJIjotMTEyLCJEZXZpY2VBZGRyZXNzQkNEIjoiNEQtNjEtNjQtNzUtNjktNkUtNkYtMzIiLCJhdCI6Ijg4LjIiLCJhaCI6IjQ0Iiwid3NhIjoiMiIsIndzZyI6IjMiLCJ3ZCI6IjYxLjUwIiwiciI6IjAuMDAifQ=="},
"dataVersion":"",
"metadataVersion":"1"}
}

Device connectivity messages

{
"id":"7861f3c1-5f1d-e9a1-c214-19feea2bf1a3","source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceConnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:42:06.0123436Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA90000000700000000000000000000002A"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

{
"id":"c2090a7b-c827-73cc-d1e8-7d49fe4a03a1",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceDisconnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:44:48.816748Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA90000000700000000000000000000002B"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

The first telemetry data arrived 04:42:15, the DeviceConnected arrived 04:42:06 so they arrived in order and within 10 seconds, the DeviceDisconnected arrived within a 20 seconds of me shutting device down.

Mqtt-Web-Socket-Only

Device ETW

Device Telemetry messages

{
"id":"3afa1a9c-f30d-d051-077e-cd25cc3b2245",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceTelemetry",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:36:08.871Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz",
"iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T04:36:08.871Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiI5LjUiLCJQYWNrZXRSU1NJIjotNzAsIlJTU0kiOi0xMTIsIkRldmljZUFkZHJlc3NCQ0QiOiI0RC02MS02NC03NS02OS02RS02Ri0zMiIsImF0IjoiODMuOCIsImFoIjoiNDciLCJ3c2EiOiIwIiwid3NnIjoiMSIsIndkIjoiMzQ3LjI1IiwiciI6IjAuMDAifQ=="}
}
...
{
"id":"fa082b67-db32-312d-e716-1b1d37f57d94",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceTelemetry",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:37:09.516Z",
"data":{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz","iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-25T04:37:09.516Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiI5LjgiLCJQYWNrZXRSU1NJIjotNzEsIlJTU0kiOi0xMTEsIkRldmljZUFkZHJlc3NCQ0QiOiI0RC02MS02NC03NS02OS02RS02Ri0zMiIsImF0IjoiODQuNCIsImFoIjoiNDciLCJ3c2EiOiIxIiwid3NnIjoiMiIsIndkIjoiMzU4LjUwIiwiciI6IjAuMDAifQ=="}
}

Device connectivity messages

{
"id":"245e4d68-06e6-4d76-1167-39a9a67b01ac",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceConnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz","time":"2020-01-25T04:36:03.8275263Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA900000007000000000000000000000028"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

{
"id":"9612e8af-84e0-a679-4c7d-28c5e968da3c",
"source":"/SUBSCRIPTIONS/12345678-9012-3456-7890-D12345678901/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceDisconnected",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-25T04:37:47.5794771Z",
"data":{"deviceConnectionStateEventInfo":{"sequenceNumber":"000000000000000001D5CDC11D3AACA900000007000000000000000000000029"},
"hubName":"FieldGatewayHub",
"deviceId":"LoRa915MHz"}
}

The first telemetry data arrived 04:36:08, the DeviceConnected arrived 04:36:03 so they arrived in order and within 10 seconds, the DeviceDisconnected arrived within a 30 seconds of me shutting device down.

Summary

My LoRa sensors nodes are sending data roughly every minute which reduces the precision of the times.

It looks like for AMQP based messaging it can take 4-5 minutes for a Devices.DeviceConnected message to arrive, for based MQTT messaging it’s 5-10 seconds.

Azure IOT Hub and Event Grid Part1

I have one an Azure IoT Hub LoRa Telemetry Field Gateway running in my office and I wanted to process the data collected by the sensors around my property without using a Software as a Service(SaaS) Internet of Things (IoT) package.

Rather than lots of screen grabs of my configuration steps I figured people reading this series of posts would be able to figure the details out themselves.

Raspberry PI with M2M LoRa Hat

I created an Azure Resource Group for this project, and created an Azure IoT Hub.

Azure Resource Group with IoT Hub

I then provisioned an Azure IoT Hub device so I could get the connection string for my Windows 10 Azure IoT Hub LoRa Telemetry Field gateway.

LoRa Field Gateway Provisioned in Azure IoT Hub

I downloaded the JSON configuration file template from my Windows 10 device (which is created on first startup after installation) and configured the Azure IoT Hub connection string.

{
   "AzureIoTHubDeviceConnectionString": "HostName=FieldGatewayHub.azure-devices.net;DeviceId=LoRa915MHz;SharedAccessKey=123456789012345678901234567890123456789/arg=",
   "AzureIoTHubTransportType": "amqp",
   "SensorIDIsDeviceIDSensorID": false,
   "Address": "LoRaIoT1",
   "Frequency": 915000000.0,
   "PABoost": true
}

I then uploaded this to my Windows 10 IoT Core device and restarted the Azure IoT Hub Field gateway so it picked up the new settings.

I could then see on the device messages from sensor nodes being unpacked and uploaded to my Azure IoT Hub.

ETW logging on device

In the Azure IoT Hub metrics I graphed the number of devices connected and the number of telemetry messages sent and could see my device connect then start uploading telemetry.

Azure IoT Hub metrics

One of my customers uses Azure Event Grid for application integration and I wanted to explore using it in an IoT solution. The first step was to create an Event Grid Domain.

I then used the Azure IoT Hub Events tab to wire up these events.

  • Microsoft.Devices.DeviceConnected
  • Microsoft.Devices.DeviceDisconnected
  • Microsoft.Devices.DeviceTelemetry
Azure IoT Hub Event Metrics

To confirm my event subscriptions were successful I previously found the “simplest” approach was to use an Azure storage queue endpoint. I had to create an Azure Storage Account with two Azure Storage Queues one for device connectivity (.DeviceConnected & .DeviceDisconnected) events and the other for device telemetry (.DeviceTelemetry) events.

I created a couple of other subscriptions so I could compare the different Event schemas (Event Grid Schema & Cloud Event Schema v1.0). At this stage I didn’t configure any Filters or Additional Features.

Azure IoT Hub Telemetry Event Metrics

I use Cerebrate Cerculean for monitoring and managing a couple of other customer projects so I used it to inspect the messages in the storage queues.

Cerebrate Ceculean Storage queue Inspector

The message are quite verbose

{
"id":"b48b6376-b7f4-ee7d-82d9-12345678901a",
"source":"/SUBSCRIPTIONS/12345678-901234789-0123-456789012345/RESOURCEGROUPS/AZUREIOTHUBEVENTGRIDAZUREFUNCTION/PROVIDERS/MICROSOFT.DEVICES/IOTHUBS/FIELDGATEWAYHUB",
"specversion":"1.0",
"type":"Microsoft.Devices.DeviceTelemetry",
"dataschema":"#",
"subject":"devices/LoRa915MHz",
"time":"2020-01-24T04:27:30.842Z","data":
{"properties":{},
"systemProperties":{"iothub-connection-device-id":"LoRa915MHz",
"iothub-connection-auth-method":"{\"scope\":\"device\",\"type\":\"sas\",\"issuer\":\"iothub\",\"acceptingIpFilterRule\":null}",
"iothub-connection-auth-generation-id":"637149227434620853",
"iothub-enqueuedtime":"2020-01-24T04:27:30.842Z",
"iothub-message-source":"Telemetry"},
"body":"eyJQYWNrZXRTTlIiOiIxMC4wIiwiUGFja2V0UlNTSSI6LTY5LCJSU1NJIjotMTA5LCJEZXZpY2VBZGRyZXNzQkNEIjoiNEQtNjEtNjQtNzUtNjktNkUtNkYtMzIiLCJhdCI6Ijc2LjYiLCJhaCI6IjU4Iiwid3NhIjoiMiIsIndzZyI6IjUiLCJ3ZCI6IjMyMi44OCIsInIiOiIwLjAwIn0="
}
}

The message payload is base64 encoded, so I used an online tool to decode it.

{
 PacketSNR":"10.0",
"PacketRSSI":-69,
"RSSI":-109,
"DeviceAddressBCD":"4D-61-64-75-69-6E-6F-32",
"at":"76.6",
"ah":"58",
"wsa":"2",
"wsg":"5",
"wd":"322.88",
"r":"0.00"
}

Without writing any code (I will script the configuration) I could upload sensor data to an Azure IoT Hub, subscribe to a selection of events the Azure IoT Hub publishes and then inspect them in an Azure Storage Queue.

I did notice that the .DeviceConnected and .DeviceDisconnected events did take a while to arrive. When I started the field gateway application on the device I would get several DeviceTelemetry events before the DeviceConnected event arrived.

Azure IoT Hub SAS Tokens revisited yet again

Based my previous post on SAS Token Expiry I wrote a test harness to better understand DateTimeOffset

using System;

namespace UnixEpochTester
{
   class Program
   {
      static void Main(string[] args)
      {
         Console.WriteLine($"DIY                {new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)}");
         Console.WriteLine($"DateTime.UnixEpoch {DateTime.UnixEpoch} {DateTime.UnixEpoch.Kind}");
         Console.WriteLine();

         TimeSpan fromUnixEpochNow = DateTime.UtcNow - DateTime.UnixEpoch;
         Console.WriteLine($"Epoc now {fromUnixEpochNow} {fromUnixEpochNow.TotalSeconds.ToString("f0")} sec");
         Console.WriteLine();

         TimeSpan fromUnixEpochFixed = new DateTime(2019, 11, 30, 2, 0, 0, DateTimeKind.Utc) - DateTime.UnixEpoch;
         Console.WriteLine($"Epoc  {fromUnixEpochFixed} {fromUnixEpochFixed.TotalSeconds.ToString("f0")} sec");
         Console.WriteLine();

         DateTimeOffset dateTimeOffset = new DateTimeOffset( new DateTime( 2019,11,30,2,0,0, DateTimeKind.Utc));
         Console.WriteLine($"Epoc DateTimeOffset {fromUnixEpochFixed} {dateTimeOffset.ToUnixTimeSeconds()}");
         Console.WriteLine();

         TimeSpan fromEpochStart = new DateTime(2019, 11, 30, 2, 0, 0, DateTimeKind.Utc) - DateTime.UnixEpoch;
         Console.WriteLine($"Epoc DateTimeOffset {fromEpochStart} {fromEpochStart.TotalSeconds.ToString("F0")}");
         Console.WriteLine();


         // https://www.epochconverter.com/ matches
         // https://www.unixtimestamp.com/index.php matches

         Console.WriteLine("Press ENTER to exit");
         Console.ReadLine();
      }
   }
}

I validated my numbers against a couple of online calculators and they matched which was a good start.

DateTimeOffset test harness

As I was testing my Azure MQTT Test Client I had noticed some oddness with MQTT connection timeouts.

string token = generateSasToken($"{server}/devices/{clientId}", password, "", new TimeSpan(0,5,0));
1/12/2019 1:29:52 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.391","OfficeHumidity":"93"}]
1/12/2019 1:30:22 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.29","OfficeHumidity":"64"}]
...
1/12/2019 1:43:56 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.591","OfficeHumidity":"98"}]
1/12/2019 1:44:26 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.754","OfficeHumidity":"68"}]


string token = generateSasToken($"{server}/devices/{clientId}", password, "", new TimeSpan(0,5,0));
1/12/2019 1:29:52 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.391","OfficeHumidity":"93"}]
1/12/2019 1:30:22 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.29","OfficeHumidity":"64"}]
...
1/12/2019 2:01:37 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.334","OfficeHumidity":"79"}]
1/12/2019 2:02:07 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.503","OfficeHumidity":"49"}]


string token = generateSasToken($"{server}/devices/{clientId}", password, "", new TimeSpan(0,5,0));
2/12/2019 9:27:21 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.196","OfficeHumidity":"61"}]
2/12/2019 9:27:51 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.788","OfficeHumidity":"91"}]
...
2/12/2019 9:36:24 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.670","OfficeHumidity":"64"}]
2/12/2019 9:36:54 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.836","OfficeHumidity":"94"}]


string token = generateSasToken($"{server}/devices/{clientId}", password, "", new TimeSpan(0,5,0));
2/12/2019 9:40:52 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.46","OfficeHumidity":"92"}]
2/12/2019 9:41:22 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.443","OfficeHumidity":"62"}]
...
2/12/2019 9:50:55 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.742","OfficeHumidity":"95"}]


string token = generateSasToken($"{server}/devices/{clientId}", password, "", new TimeSpan(0,10,0));
approx 15min as only 30 sec resolution
1/12/2019 12:50:23 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.630","OfficeHumidity":"65"}]
1/12/2019 12:50:53 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.798","OfficeHumidity":"95"}]
...
1/12/2019 1:03:59 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.677","OfficeHumidity":"41"}]
1/12/2019 1:04:30 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.26","OfficeHumidity":"72"}]


string token = generateSasToken($"{server}/devices/{clientId}", password, "", new TimeSpan(0,10,0));
approx 15min as only 30 sec resolution
1/12/2019 1:09:30 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.106","OfficeHumidity":"72"}]
1/12/2019 1:10:00 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.463","OfficeHumidity":"42"}]
...
1/12/2019 1:23:35 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.366","OfficeHumidity":"77"}]
1/12/2019 1:24:05 PM> Device: [MQTTLoRa915MHz], Data:[{"OfficeTemperature":"22.537","OfficeHumidity":"47"}]

The dataset with the 5 minute expiry which remained connected for approximately 30 mins was hopefully a configuration issue.

The updated SAS Token code not uses ToUnixTimeSeconds to eliminate the scope for local vs. UTC issues.

      public static string generateSasToken(string resourceUri, string key, string policyName, TimeSpan timeToLive)
      {
         DateTimeOffset expiryDateTimeOffset = new DateTimeOffset(DateTime.UtcNow.Add(timeToLive));

         string expiryEpoch = expiryDateTimeOffset.ToUnixTimeSeconds().ToString();
         string stringToSign = WebUtility.UrlEncode(resourceUri) + "\n" + expiryEpoch;

         HMACSHA256 hmac = new HMACSHA256(Convert.FromBase64String(key));
         string signature = Convert.ToBase64String(hmac.ComputeHash(Encoding.UTF8.GetBytes(stringToSign)));

         string token = $"SharedAccessSignature sr={WebUtility.UrlEncode(resourceUri)}&sig={WebUtility.UrlEncode(signature)}&se={expiryEpoch}";

         if (!String.IsNullOrEmpty(policyName))
         {
            token += "&skn=" + policyName;
         }

         return token;
      }

I need to test the expiry of my SAS Tokens some more especially with the client running on my development machine (NZT which is currently UTC+13) and in Azure (UTC timezone)

Azure IoT Hub MQTT LoRa Field Gateway

Back in April I started working on an MQTT LoRa Field gateway which was going to support a selection of different Software as a service(SaaS) Internet of Things IoT) platforms.

I now have a working Azure IoT Hub plug-in (Azure IoT Central support as planned as well) with the first iteration focused on Device to Cloud (D2C) messaging. In a future iteration I will add Cloud to Device messaging(C2D).

My applications use a lightweight, easy to implemented protocol which is intended for hobbyist and educational use rather than commercial applications (I have been working on a more secure version as yet another side project)

I have a number of sample Arduino with Dragino LoRa Shield for Arduino, MakerFabs Maduino, Dragino LoRa Mini Dev, M2M Low power Node and Netduino with Elecrow LoRa RFM95 Shield etc. clients. These work with both my platform specific (Adafruit.IO, Azure IoT Hub/Central) gateways and protocol specific field gateways.

Azure IoT Hub Device Explorer Data Display

When the application is first started it creates a minimal configuration file which should be downloaded, the missing information filled out, then uploaded using the File explorer in the Windows device portal.

{
  "MQTTUserName": "YourIoTHubHub.azure-devices.net/MQTTLoRa915MHz/api-version=2018-06-30",
  "MQTTPassword": "SharedAccessSignature sr=YourIoTHubHub.azure-devices.net%2Fdevices%2FMQTTLoRa915MHz&sig=123456789012345678901234567890123456789012345%3D&se=1574673583",
  "MQTTClientID": "MQTTLoRa915MHz",
  "MQTTServer": "YourIoTHubHub.azure-devices.net",
  "Address": "LoRaIoT1",
  "Frequency": 915000000.0,
  "MessageHandlerAssembly": "Mqtt.IoTCore.FieldGateway.LoRa.AzureIoTHub",
  "PlatformSpecificConfiguration": ""
}

The application logs debugging information to the Windows 10 IoT Core ETW logging Microsoft-Windows-Diagnostics-LoggingChannel

MQTT LoRa Gateway with Azure IoT Hub plug-in

The message handler uploads all values in an inbound messages in one MQTT message.

namespace devMobile.Mqtt.IoTCore.FieldGateway
{
   using System;
   using System.Diagnostics;
   using System.Text;
   using Windows.Foundation.Diagnostics;

   using devMobile.IoT.Rfm9x;
   using MQTTnet;
   using MQTTnet.Client;
   using Newtonsoft.Json.Linq;
   using Newtonsoft.Json;

   public class MessageHandler : IMessageHandler
   {
      private LoggingChannel Logging { get; set; }
      private IMqttClient MqttClient { get; set; }
      private Rfm9XDevice Rfm9XDevice { get; set; }
      private string PlatformSpecificConfiguration { get; set; }

      void IMessageHandler.Initialise(LoggingChannel logging, IMqttClient mqttClient, Rfm9XDevice rfm9XDevice, string platformSpecificConfiguration)
      {
         LoggingFields processInitialiseLoggingFields = new LoggingFields();

         this.Logging = logging;
         this.MqttClient = mqttClient;
         this.Rfm9XDevice = rfm9XDevice;
         this.PlatformSpecificConfiguration = platformSpecificConfiguration;
      }

      async void IMessageHandler.Rfm9XOnReceive(Rfm9XDevice.OnDataReceivedEventArgs e)
      {
         LoggingFields processReceiveLoggingFields = new LoggingFields();
         char[] sensorReadingSeparators = { ',' };
         char[] sensorIdAndValueSeparators = { ' ' };

         processReceiveLoggingFields.AddString("PacketSNR", e.PacketSnr.ToString("F1"));
         processReceiveLoggingFields.AddInt32("PacketRSSI", e.PacketRssi);
         processReceiveLoggingFields.AddInt32("RSSI", e.Rssi);

         string addressBcdText = BitConverter.ToString(e.Address);
         processReceiveLoggingFields.AddInt32("DeviceAddressLength", e.Address.Length);
         processReceiveLoggingFields.AddString("DeviceAddressBCD", addressBcdText);

         string messageText;
         try
         {
            messageText = UTF8Encoding.UTF8.GetString(e.Data);
            processReceiveLoggingFields.AddString("MessageText", messageText);
         }
         catch (Exception ex)
         {
            processReceiveLoggingFields.AddString("Exception", ex.ToString());
            this.Logging.LogEvent("PayloadProcess failure converting payload to text", processReceiveLoggingFields, LoggingLevel.Warning);
            return;
         }

         // Chop up the CSV text
         string[] sensorReadings = messageText.Split(sensorReadingSeparators, StringSplitOptions.RemoveEmptyEntries);
         if (sensorReadings.Length < 1)
         {
            this.Logging.LogEvent("PayloadProcess payload contains no sensor readings", processReceiveLoggingFields, LoggingLevel.Warning);
            return;
         }

         JObject payloadJObject = new JObject();

         JObject feeds = new JObject();

         // Chop up each sensor read into an ID & value
         foreach (string sensorReading in sensorReadings)
         {
            string[] sensorIdAndValue = sensorReading.Split(sensorIdAndValueSeparators, StringSplitOptions.RemoveEmptyEntries);

            // Check that there is an id & value
            if (sensorIdAndValue.Length != 2)
            {
               this.Logging.LogEvent("PayloadProcess payload invalid format", processReceiveLoggingFields, LoggingLevel.Warning);
               return;
            }

            string sensorId = string.Concat(addressBcdText, sensorIdAndValue[0]);
            string value = sensorIdAndValue[1];

            feeds.Add(sensorId.ToLower(), value);
         }
         payloadJObject.Add("feeds", feeds);

         string topic = $"devices/{MqttClient.Options.ClientId}/messages/events/";

         try
         {
            var message = new MqttApplicationMessageBuilder()
               .WithTopic(topic)
               .WithPayload(JsonConvert.SerializeObject(payloadJObject))
               .WithAtLeastOnceQoS()
               .Build();
            Debug.WriteLine(" {0:HH:mm:ss} MQTT Client PublishAsync start", DateTime.UtcNow);
            await MqttClient.PublishAsync(message);
            Debug.WriteLine(" {0:HH:mm:ss} MQTT Client PublishAsync finish", DateTime.UtcNow);

            this.Logging.LogEvent("PublishAsync Azure IoTHub payload", processReceiveLoggingFields, LoggingLevel.Information);
         }
         catch (Exception ex)
         {
            processReceiveLoggingFields.AddString("Exception", ex.ToString());
            this.Logging.LogEvent("PublishAsync Azure IoTHub payload", processReceiveLoggingFields, LoggingLevel.Error);
         }
      }

      void IMessageHandler.MqttApplicationMessageReceived(MqttApplicationMessageReceivedEventArgs e)
      {
         LoggingFields processReceiveLoggingFields = new LoggingFields();

         processReceiveLoggingFields.AddString("ClientId", e.ClientId);
#if DEBUG
         processReceiveLoggingFields.AddString("Payload", e.ApplicationMessage.ConvertPayloadToString());
#endif
         processReceiveLoggingFields.AddString("QualityOfServiceLevel", e.ApplicationMessage.QualityOfServiceLevel.ToString());
         processReceiveLoggingFields.AddBoolean("Retain", e.ApplicationMessage.Retain);
         processReceiveLoggingFields.AddString("Topic", e.ApplicationMessage.Topic);

         this.Logging.LogEvent("MqttApplicationMessageReceived topic not processed", processReceiveLoggingFields, LoggingLevel.Error);
      }

      void IMessageHandler.Rfm9xOnTransmit(Rfm9XDevice.OnDataTransmitedEventArgs e)
      {
      }
   }
}

The formatting of the username and generation of password are password are a bit awkward and will be fixed in a future refactoring. Along with regenerating the SAS connection token just before it is due to expire.