ML.Net YoloV5 Object Detection on ARM64 Raspberry PI

For the last month I have been using preview releases of ML.Net with a focus on Open Neural Network Exchange(ONNX) support. A company I work with has a YoloV5 based solution for tracking the cattle in stockyards so I figured I would try getting YoloV5 working with .Net Core and ML.Net on ARM64.

After some searching I found a repository created by Github user Mentalstack for an ONNX based YoloV5 implementation which I cloned and started hacking. I stared by updating the NuGet packages for the scorer and sample application and fixing what broke.

Yolo V5 Scorer NuGet packages

I didn’t update the System.Drawing.Common Nuget as my Raspberry PI V4 has got .Net Core V5 installed.

Yolo V5 Sample application NuGet Packages

The sample application only had one dependency Microsoft.ML.OnnxRuntime which I was able to drop as it was referenced by the YoloV5Net.Scorer.

I then modified the sample application to process all the images in an “input” folder and save the processed images with Minimum Bounding Boxes(MBRs) to the output folder.

using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using Yolov5Net.Scorer;
using Yolov5Net.Scorer.Models;

namespace Yolov5Net.App
{
	class Program
	{
		static void Main(string[] args)
		{
			var scorer = new YoloScorer<YoloCocoP5Model>("Assets/Weights/yolov5s.onnx");

			DateTime startedAtUtc = DateTime.UtcNow;

			Console.WriteLine($"{startedAtUtc:yyyy:MM:dd HH:mm:ss} Start");

			string[] imageFilesPaths = Directory.GetFiles("Assets/inputs");

			foreach (string imageFilePath in imageFilesPaths)
			{
				using (Image image = Image.FromFile(imageFilePath))
				using (Graphics graphics = Graphics.FromImage(image))
				{
					List<YoloPrediction> predictions = scorer.Predict(image);

					foreach (var prediction in predictions) // iterate predictions to draw results
					{
						double score = Math.Round(prediction.Score, 2);

						graphics.DrawRectangles(new Pen(prediction.Label.Color, 1), new[] { prediction.Rectangle });

						var (x, y) = (prediction.Rectangle.X - 3, prediction.Rectangle.Y - 23);

						graphics.DrawString($"{prediction.Label.Name} ({score})", new Font("Consolas", 16, GraphicsUnit.Pixel), new SolidBrush(prediction.Label.Color), new PointF(x, y));
					}

					image.Save($"Assets/outputs/{Path.GetFileName(imageFilePath)}");
				}
			}

			DateTime finishedAtUtc = DateTime.UtcNow;
			TimeSpan duration = finishedAtUtc - startedAtUtc;

			Console.WriteLine($"{finishedAtUtc:yyyy:MM:dd HH:mm:ss} Finish Duration:{duration.TotalMilliseconds}mSec");
		}
	}
}

The sample images are from wikimedia commons site. Go to Wikimediacommon.md to refer to the image urls and their licenses.

YoloV5Net Solution with sample images

The next step of my Proof of Concept(PoC) was to get the YoloV5 Object Detection sample application working on my Intel(R) Core(TM) i7-8700T CPU @ 2.40GHz 2.40 GHz desktop development system. After debugging the software with Visual Studio I “published” the application to a folder.

Visual Studio 2019 Publish to folder
Desktop YoloV5 Sample application output

The application took roughly 0.9 seconds to process each of my 5 sample images. The next task was to get the YoloV5 sample application working on a Raspberry Pi 4 running Bullseye.

Copying application to RPI4 with Winscp

To deploy applications I often copy the contents of the “publish” directory to the device with WinSCP. Getting the Object sample application running on my Raspberry Pi4 took a couple of attempts…

Input image folder path invalid

I had forgotten then Unix paths are case sensitive inputs vs. Inputs

ONNX Runtime native binary missing exception
pi@raspberrypi4a:~/vsdbg/Yolov5Net.App $ dotnet Yolov5Net.App.dll
Unhandled exception. System.TypeInitializationException: The type initializer for 'Microsoft.ML.OnnxRuntime.NativeMethods' threw an exception.
 ---> System.DllNotFoundException: Unable to load shared library 'onnxruntime' or one of its dependencies. In order to help diagnose loading problems, consider setting the LD_DEBUG environment variable: libonnxruntime: cannot open shared object file: No such file or directory
   at Microsoft.ML.OnnxRuntime.NativeMethods.OrtGetApiBase()
   at Microsoft.ML.OnnxRuntime.NativeMethods..cctor()
   --- End of inner exception stack trace ---
   at Microsoft.ML.OnnxRuntime.SessionOptions..ctor()
   at Yolov5Net.Scorer.YoloScorer`1..ctor(String weights, SessionOptions opts) in C:\Users\BrynLewis\source\repos\yolov5-net\src\Yolov5Net.Scorer\YoloScorer.cs:line 326
   at Yolov5Net.App.Program.Main(String[] args) in C:\Users\BrynLewis\source\repos\yolov5-net\src\Yolov5Net.App\Program.cs:line 14
Aborted
pi@raspberrypi4a:~/vsdbg/Yolov5Net.App $
\

The ONNX runtime was missing so I confirmed the processor architecture with uname then copied the platform specific file to the application folder with Winscp.

Copying platform specific runtime to application folder with WInscp

I then checked Yolo V4 Sample application was generating output images with WinSCP.

Image output folder with marked up images
Sample image with YoloV5 generated MBRs

On the Raspberry PI4B the application took roughly 8.3 seconds to process each of my 5 sample images.

RPI4 Device YoloV5 Sample application output

I was “standing on the shoulders of giants” the Mentalstack code just worked, my changes were minimal and largely so I could collect some basic performance metrics. I need to spend some more time figuring out how the implementation works.

3 thoughts on “ML.Net YoloV5 Object Detection on ARM64 Raspberry PI

  1. Need some wisdom on the missing ONNX runtime.
    I see libonnxruntime.so in the linux-x64/native folder on the machine I am compiling (Ubuntu 64 using dotnet code)
    I still get the “unable to load shared library onnxruntime” when running the app.
    I must be doing something wrong here….

  2. Hi

    On my dev box I use VS2K19 so I publish my application to a folder

    C:\Users\BrynLewis\source\repos.…\ObjectDetectionCamera\bin\Debug\net5.0\publish

    The contents of the “publish’ folder with the application dlls, library dependences etc. end up in a folder on the device.

    On my desktop the platform native runtimes are in sub folders of the publish folder

    C:\Users\BrynLewis\source\repos...\ObjectDetectionCamera\bin\Debug\net5.0\publish\runtimes\android\native\onnxruntime.aar

    C:\Users\BrynLewis\source\repos...\ObjectDetectionCamera\bin\Debug\net5.0\publish\runtimes\linux-aarch64\native\libonnxruntime.so
    etc.

    Another another part of the build process (initially just Winscp until things have stabilised) copies the applicable native runtime to the application folder.

    In my case

    C:\Users\BrynLewis\source\repos...\ObjectDetectionCamera\bin\Debug\net5.0\publish\runtimes\linux-aarch64\native\libonnxruntime.so

    Ends up with rest of binaries in

    /home/pi/ObjectDetectionCamera

    Hope that helps

    @KiwiBryn

  3. Pingback: ML.Net YoloV5 + Camera on ARM64 Raspberry PI | devMobile's blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.