Azure IOT Hub nRF24L01 Windows 10 IoT Core Field Gateway with BorosRF2

A couple of BorosRF2 Dual nRF24L01 Hats arrived earlier in the week. After some testing with my nRF24L01 Test application I have added compile-time configuration options for the two nRF24L01 sockets to my Azure IoT Hub nRF24L01 Field Gateway.

Boros RF2 with Dual nRF24L01 devices
public sealed class StartupTask : IBackgroundTask
{
   private const string ConfigurationFilename = "config.json";

   private const byte MessageHeaderPosition = 0;
   private const byte MessageHeaderLength = 1;

   // nRF24 Hardware interface configuration
#if CEECH_NRF24L01P_SHIELD
   private const byte RF24ModuleChipEnablePin = 25;
   private const byte RF24ModuleChipSelectPin = 0;
   private const byte RF24ModuleInterruptPin = 17;
#endif

#if BOROS_RF2_SHIELD_RADIO_0
   private const byte RF24ModuleChipEnablePin = 24;
   private const byte RF24ModuleChipSelectPin = 0;
   private const byte RF24ModuleInterruptPin = 27;
#endif

#if BOROS_RF2_SHIELD_RADIO_1
   private const byte RF24ModuleChipEnablePin = 25;
   private const byte RF24ModuleChipSelectPin = 1;
   private const byte RF24ModuleInterruptPin = 22;
#endif

private readonly LoggingChannel logging = new LoggingChannel("devMobile Azure IotHub nRF24L01 Field Gateway", null, new Guid("4bd2826e-54a1-4ba9-bf63-92b73ea1ac4a"));
private readonly RF24 rf24 = new RF24();

This version supports one nRF24L01 device socket active at a time.

Enabling both nRF24L01 device sockets broke outbound message routing in a prototype branch with cloud to device(C2D) messaging support. This functionality is part of an Over The Air(OTA) device provisioning implementation I’m working o.

Adafruit.IO nRF24L01 Windows 10 IoT Core Field Gateway with BorosRF2

A couple of BorosRF2 Dual nRF24L01 Hats arrived earlier in the week. After some testing with my nRF24L01 Test application I have added compile-time configuration options for the two nRF24L01 sockets to my Adafruit.IO nRF24L01 Field Gateway.

Boros RF2 with Dual nRF24L01 devices
public sealed class StartupTask : IBackgroundTask
{
   private const string ConfigurationFilename = "config.json";

   private const byte MessageHeaderPosition = 0;
   private const byte MessageHeaderLength = 1;

   // nRF24 Hardware interface configuration
#if CEECH_NRF24L01P_SHIELD
   private const byte RF24ModuleChipEnablePin = 25;
   private const byte RF24ModuleChipSelectPin = 0;
   private const byte RF24ModuleInterruptPin = 17;
#endif

#if BOROS_RF2_SHIELD_RADIO_0
   private const byte RF24ModuleChipEnablePin = 24;
   private const byte RF24ModuleChipSelectPin = 0;
   private const byte RF24ModuleInterruptPin = 27;
#endif

#if BOROS_RF2_SHIELD_RADIO_1
   private const byte RF24ModuleChipEnablePin = 25;
   private const byte RF24ModuleChipSelectPin = 1;
   private const byte RF24ModuleInterruptPin = 22;
#endif

private readonly LoggingChannel loggingChannel = new LoggingChannel("devMobile AdaFruit.IO nRF24L01 Field Gateway", null, new Guid("4bd2826e-54a1-4ba9-bf63-92b73ea1ac4a"));
private readonly RF24 rf24 = new RF24();

For this initial version only one nRF24L01 device socket active at a time is supported.

Windows 10 IoT Core BorosRf2 – Dual nRF24L01 pHat/Hat

I have a couple of nRF24L01P Raspberry PI projects (primarily my Adafruit.IO and Azure IoT Hubs/Central Windows 10 IoT Core telemetry field gateways) and recently Boros Lab a vendor of suitable Raspberry PI Hats opened a store on Tindie.com.

I ordered a couple of BorosRf2 – Dual nRF24L01 pHat/Hat + RTC for Pis (mine were without the Real-time clock(RTC)) for testing. The vendor’s github repository had details of the GPIO pins used so it was relatively quick and easy to modify my Windows 10 IoT nRF24L01 test harness to work with a single port on the hat.

Single port configuration

By setting a conditional compile option (CEECH_NRF24L01P_SHIELD, BOROS_RF2_SHIELD_RADIO_0 or BOROS_RF2_SHIELD_RADIO_1) my test application could be configured to support the Boros or Ceech (with a modification detailed here) shields.

namespace devmobile.IoTCore.nRF24L01BackGroundTask
{
	public sealed class StartupTask : IBackgroundTask
	{
		// nRF24 Hardware interface configuration
#if CEECH_NRF24L01P_SHIELD
      private const byte ChipEnablePin = 25;
      private const byte ChipSelectPin = 0;
      private const byte InterruptPin = 17;
#endif
#if BOROS_RF2_SHIELD_RADIO_0
      private const byte ChipEnablePin = 24;
      private const byte ChipSelectPin = 0;
      private const byte InterruptPin = 27;
#endif
#if BOROS_RF2_SHIELD_RADIO_1
      private const byte ChipEnablePin = 25;
      private const byte ChipSelectPin = 1;
      private const byte InterruptPin = 22;
#endif
      private const string BaseStationAddress = "Node1";
      private const byte nRF24Channel = 20;
      private RF24 Radio = new RF24();
      private BackgroundTaskDeferral deferral;
      private ThreadPoolTimer timer;

Both vendors’ shields worked well with my test application, the ceech shield (USD9.90 April 2019) is a little bit cheaper, but the Boros shield (USD15.90 April 2019 ) doesn’t require any modification and has a socket for a second nRF24 device.