Smartish Edge Camera – Azure Storage Image Tags

This ML.Net +You only look once V5(YoloV5) + RaspberryPI 4B project uploads raw camera and marked up (with searchable tags) images to Azure Storage.

Raspberry PI 4 B backyard test rig

My backyard test-rig consists of a Unv ADZK-10 Security Camera, Power over Ethernet(PoE) module, D-Link Switch and a Raspberry Pi 4B 8G.


  "Application": {
    "DeviceId": "edgecamera",
    "PredicitionScoreThreshold": 0.7,
    "PredictionLabelsOfInterest": [
    "OutputImageMarkup": true
  "AzureStorage": {
    "ConnectionString": "FhisIsNotTheConnectionStringYouAreLookingFor",
    "ImageCameraFilenameFormat": "{0:yyyyMMdd}/camera/{0:HHmmss}.jpg",
    "ImageMarkedUpFilenameFormat": "{0:yyyyMMdd}/markedup/{0:HHmmss}.jpg"

After the You Only Look Once(YOLOV5)+ML.Net+Open Neural Network Exchange(ONNX) plumbing has loaded a timer with a configurable due time and period is started.

private async void ImageUpdateTimerCallback(object state)
	DateTime requestAtUtc = DateTime.UtcNow;

	// Just incase - stop code being called while photo already in progress
	if (_cameraBusy)
	_cameraBusy = true;

	_logger.LogInformation("Image processing start");

		if (_applicationSettings.ImageCameraUpload)
			_logger.LogTrace("Image camera upload start");

			string imageFilenameCloud = string.Format(_azureStorageSettings.ImageCameraFilenameFormat, requestAtUtc);

			await _imagecontainerClient.GetBlobClient(imageFilenameCloud).UploadAsync(_applicationSettings.ImageCameraFilepath, true);

			_logger.LogTrace("Image camera upload done");

		List<YoloPrediction> predictions;

		using (Image image = Image.FromFile(_applicationSettings.ImageCameraFilepath))
			_logger.LogTrace("Prediction start");
			predictions = _scorer.Predict(image);
			_logger.LogTrace("Prediction done");

			OutputImageMarkup(image, predictions, _applicationSettings.ImageMarkedUpFilepath);

		if (_logger.IsEnabled(LogLevel.Trace))
			_logger.LogTrace("Predictions {0}", predictions.Select(p => new { p.Label.Name, p.Score }));

		var predictionsOfInterest = predictions.Where(p => p.Score > _applicationSettings.PredicitionScoreThreshold).Select(c => c.Label.Name).Intersect(_applicationSettings.PredictionLabelsOfInterest, StringComparer.OrdinalIgnoreCase);
		if (_logger.IsEnabled(LogLevel.Trace))
			_logger.LogTrace("Predictions of interest {0}", predictionsOfInterest.ToList());

		var predictionsTally = predictions.Where(p => p.Score >= _applicationSettings.PredicitionScoreThreshold)
									.GroupBy(p => p.Label.Name)
									.Select(p => new
										Label = p.Key,
										Count = p.Count()

		if (_applicationSettings.ImageMarkedupUpload && predictionsOfInterest.Any())
			_logger.LogTrace("Image marked-up upload start");

			string imageFilenameCloud = string.Format(_azureStorageSettings.ImageMarkedUpFilenameFormat, requestAtUtc);

			BlobUploadOptions blobUploadOptions = new BlobUploadOptions()
				Tags = new Dictionary<string, string>()

			foreach (var predicition in predictionsTally)
				blobUploadOptions.Tags.Add(predicition.Label, predicition.Count.ToString());

			BlobClient blobClient = _imagecontainerClient.GetBlobClient(imageFilenameCloud);

			await blobClient.UploadAsync(_applicationSettings.ImageMarkedUpFilepath, blobUploadOptions);

			_logger.LogTrace("Image marked-up upload done");

		if (_logger.IsEnabled(LogLevel.Information))
			_logger.LogInformation("Predictions tally {0}", predictionsTally.ToList());
	catch (Exception ex)
		_logger.LogError(ex, "Camera image download, post procesing, image upload, or telemetry failed");
		_cameraBusy = false;

	TimeSpan duration = DateTime.UtcNow - requestAtUtc;

	_logger.LogInformation("Image processing done {0:f2} sec", duration.TotalSeconds);
RaspberryPI 4B console application output

A marked up image is uploaded to Azure Storage if any of the objects detected (with a score greater than PredicitionScoreThreshold) is in the PredictionLabelsOfInterest list.

Single bicycle
Two bicycles
Three bicycles
Three bicycles with person in the foreground
Two bicycles with a person and dog in the foreground

I have added Tags to the images so they can be filtered with tools like Azure Storage Explorer.

All the camera images
All the marked up images with more than one bicycle
All the marked up images with more than two bicycles
All the marked up images with people and bicycles

One thought on “Smartish Edge Camera – Azure Storage Image Tags

  1. Pingback: Smartish Edge Camera – Azure Storage Service | devMobile's blog

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.