Arduino RS485 Temperature, Humidity & CO2 Sensor

As part of this series of samples comparing Arduino to nanoFramework to .NET IoT Device “Proof of Concept (PoC) applications, several posts use a SenseCAP CO2, Temperature and Humidity Sensor SKU101991029.

I cut up a spare Industrial IP68 Modbus RS485 1-to-4 Splitter/Hub to connect the sensor to the breakout board. This sensor has an operating voltage of 5V ~ 24V so it can be powered by the 5V output of a RS485 Breakout Board for Seeed Studio XIAO (SKU 113991354)

The red wire is for powering the sensor with a 12V power supply so was tied back so it didn’t touch any of the other electronics.

#include <HardwareSerial.h>
#include <ModbusMaster.h>

HardwareSerial RS485Serial(1);
ModbusMaster node;

// -----------------------------
// RS485 Pin Assignments (Corrected)
// -----------------------------
const int RS485_RX = 6;  // UART1 RX
const int RS485_TX = 5;  // UART1 TX
const int RS485_EN = D2;

// Sensor/Modbus parameters (from datasheet)
#define MODBUS_SLAVE_ID 0x2D
#define REG_CO2 0x0000
#define REG_TEMPERATURE 0x0001
#define REG_HUMIDITY 0x0002
#define REG_WARMUP_TIME 0x0021

uint32_t warmUp_Completed;

// Forward declarations for ModbusMaster callbacks
void preTransmission();
void postTransmission();

void setup() {
  Serial.begin(9600);
  delay(5000);

  Serial.println("ModbusMaster: Seeed SKU101991029 starting");

  // Wait for the hardware serial to be ready
  while (!Serial)
    ;
  Serial.println("Serial done");

  pinMode(RS485_EN, OUTPUT);
  digitalWrite(RS485_EN, LOW);  // Start in RX mode

  // Datasheet: 9600 baud, 8N1
  RS485Serial.begin(9600, SERIAL_8N1, RS485_RX, RS485_TX);
  while (!RS485Serial)
    ;
  Serial.println("RS485 done");

  // Tie ModbusMaster to the UART we just configured
  node.begin(MODBUS_SLAVE_ID, RS485Serial);

  // Register callbacks for half-duplex direction control
  node.preTransmission(preTransmission);
  node.postTransmission(postTransmission);

  // --- Read Startup time ---
  uint8_t result = node.readHoldingRegisters(REG_WARMUP_TIME, 1);
  if (result == node.ku8MBSuccess) {
    uint16_t warmUpTime = node.getResponseBuffer(0);
    warmUpTime += 3;
    Serial.printf("Start up time: %u sec\n", warmUpTime);
    warmUp_Completed = millis() + (warmUpTime * 1000);
  } else {
    Serial.printf("Read REG_WARMUP_TIME failed (err=%u)\n", result);
  }
}

// Toggle DE/RE around TX per ModbusMaster design
void preTransmission() {
  digitalWrite(RS485_EN, HIGH);  // enable driver (TX)
  delayMicroseconds(250);        // transceiver turn-around margin
}

void postTransmission() {
  delayMicroseconds(250);       // ensure last bit left the wire
  digitalWrite(RS485_EN, LOW);  // back to receive
}

void loop() {
  float temperature;
  uint16_t humidity;
  uint16_t co2;

  uint8_t result = node.readInputRegisters(0x0000, 3);

  if (result == node.ku8MBSuccess) {
    // --- Read Temperature ---
    uint16_t rawTemperature = node.getResponseBuffer(REG_TEMPERATURE);
    temperature = (int16_t)rawTemperature / 100.0;

    // --- Read Humidity ---
    humidity = node.getResponseBuffer(REG_HUMIDITY);
    humidity = humidity / 100;

    if (warmUp_Completed <= millis()) {
      // --- Read CO2  ---
      co2 = node.getResponseBuffer(REG_CO2);
      Serial.printf("Temperature: %.1f °C Humidity: %u %%RH CO2: %u ppm\n", temperature, humidity, co2);
    }
    else {
      Serial.printf("Temperature: %.1f °C Humidity: %u %%RH\n", temperature, humidity);
    }
  }
  else
  {
    Serial.printf("Modbus error: %d\n", result);      
  }

  delay(60000);
}

The Arduino ModbusMaster based application worked first time but implementing the CO2 Sensor warm-up time took a couple of attempts.

I did consider trying to fit the Seeed Studio XIAO ESP32-S3 inside the SenseCAP CO2, Temperature and Humidity Sensor but the electronics had been sprayed with a corrosion resistant coating.

Connecting directly (rather than via a breakout board) the VCC+, VCC-, universal asynchronous receiver-transmitter(UART) and transmit enable would have been difficult.

nanoFramework RS485 Temperature, Humidity & CO2 Sensor

As part of this series of samples comparing Arduino to nanoFramework to .NET IoT Device “Proof of Concept (PoC) applications, several posts use a SenseCAP CO2, Temperature and Humidity Sensor SKU101991029.

I cut one of the cables of a spare Industrial IP68 Modbus RS485 1-to-4 Splitter/Hub to connect the sensor to the breakout board. This sensor has an operating voltage of 5V ~ 24V so it can be powered by the 5V output of a RS485 Breakout Board for Seeed Studio XIAO (SKU 113991354)

The red wire is for powering the sensor with a 12V power supply so was tied back so it didn’t touch any of the other electronics.

public static void Main()
{
   Debug.WriteLine("Modbus Client for Seeedstudio Temperature Humidity and CO2 sensor SKU101991029");

   Configuration.SetPinFunction(Gpio.IO06, DeviceFunction.COM2_RX);
   Configuration.SetPinFunction(Gpio.IO05, DeviceFunction.COM2_TX);
   Configuration.SetPinFunction(Gpio.IO03, DeviceFunction.COM2_RTS);

   DateTime warmupCompleted = DateTime.UtcNow;

   // Modbus Client
   using (var client = new ModbusClient("COM2"))
   {
      try
      {
         Debug.WriteLine("Reading CO2 Sensor Warmup duration");

         // Read warm-up time (seconds) from 0x0021
         var warmupReg = client.ReadHoldingRegisters(SlaveAddress, RegWarmup, 1);
         ushort warmupSeconds = unchecked((ushort)warmupReg[0]);

         Debug.WriteLine($"Sensor warm-up:{warmupSeconds}sec");

         warmupCompleted += TimeSpan.FromSeconds(warmupSeconds);
      }
      catch (Exception ex)
      {
         Debug.WriteLine($"Warm-up read failed (continuing): {ex.Message}");
      }

      while (true)
      {
         try
         {
            var regs = client.ReadHoldingRegisters(SlaveAddress, RegCO2, 3);
            short rawTemp = regs[RegTemperature];
            double tempC = rawTemp / 100.0; // Signed 16 - bit, value = °C * 100

            // regs[2] = Humidity. Unsigned 16-bit, value = %RH * 100
            ushort rawRh = unchecked((ushort)regs[RegHumidity]);
            double rhPercent = rawRh / 100.0; // Humidity. Unsigned 16-bit, value = %RH * 100

            if (DateTime.UtcNow > warmupCompleted)
            {
               // regs[0] = CO2 (ppm)
               ushort rawCO2 = unchecked((ushort)regs[RegCO2]);

               int co2Ppm = rawCO2; // already ppm
               Debug.WriteLine($"T:{tempC:F2}°C, RH:{rhPercent:F2}%, CO2:{co2Ppm} ppm");
            }
            else
            {
               Debug.WriteLine($"T:{tempC:F2}°C, RH:{rhPercent:F2}%");
            }
         }
         catch (Exception ex)
         {
            Debug.WriteLine($"Read failed: {ex.Message}");
         }

         Thread.Sleep(60000);
      }
   }
}

The nanoFramework Modbus Library based application worked first time but implementing the CO2 Sensor warm-up time took a couple of attempts.

I did consider trying to fit the Seeed Studio XIAO ESP32-S3 inside the SenseCAP CO2, Temperature and Humidity Sensor but the electronics had been sprayed with a corrosion resistant coating. Connecting (rather than via a breakout board) the VCC+, VCC-, universal asynchronous receiver-transmitter(UART) and transmit enable would have been difficult.

I tried Copilot to clean up the image but it didn’t go well